
Creaঞve Scala
Dave Gurnell and Noel Welsh

March 2020

underscore

Copyright 2015-2020 Dave Gurnell and Noel Welsh.

2

Creaঞve Scala
March 2020

Copyright 2015-2020 Dave Gurnell and Noel Welsh.

Licensed under Creaঞve Commons A�ribuঞon-NonCommercial-ShareAlike 4.0 Internaঞonal License.

Published by Underscore Consulঞng LLP, Brighton, UK.

Copies of this, and related topics, can be found at h�p://underscore.io/training.

Team discounts, when available, may also be found at that address.

Contact the author regarding this text at: hello@underscore.io.

Our courses, workshops, and other products can help you and your team create be�er so[ware and have
more fun. For more informaঞon, as well as the latest Underscore ঞtles, please visit

h�p://underscore.io/training.

Disclaimer: Every precauࢼon was taken in the preparaࢼon of this book. However, the author and Underscore
Consulࢼng LLP assume no responsibility for errors or omissions, or for damages that may result from the use of

informaࢼon (including program lisࢼngs) contained herein.

http://underscore.io
http://underscore.io/training
mailto:hello@underscore.io
http://underscore.io/training

Contents

Foreword 7

Notes on the Early Access Ediঞon . 8

Acknowledgements . 8

1 Geমng Started 11

1.1 Installing Terminal So[ware and a Text Editors . 11

1.2 IntelliJ . 13

1.3 Background . 14

1.4 GitHub . 16

2 Expressions, Values, and Types 17

2.1 Literal Expressions . 18

2.2 Values are Objects . 19

2.3 Types . 20

2.4 Exercises . 22

3 Compuঞng With Pictures 25

3.1 Images . 25

3.2 Layout . 27

3.3 Color . 28

3.4 Creaঞng Colors . 29

3.5 Exercises . 35

4 Wriঞng Larger Programs 39

4.1 Working Within the Console . 39

4.2 Coding Outside the Console . 40

4.3 Names . 42

4.4 Abstracঞon . 46

4.5 Packages and Imports . 49

3

4 CONTENTS

5 The Subsঞtuঞon Model of Evaluaঞon 51

5.1 Subsঞtuঞon . 51

5.2 Order of Evaluaঞon . 54

5.3 Local Reasoning . 56

6 Methods 59

6.1 Methods . 59

6.2 Method Syntax . 61

6.3 Method Semanঞcs . 62

6.4 Conclusions . 63

7 Structural Recursion 65

7.1 A Line of Boxes . 65

7.2 Match Expressions . 67

7.3 The Natural Numbers . 69

7.4 Structural Recursion . 69

7.5 Reasoning about Recursion . 74

7.6 Conclusions . 76

8 Fractals 79

8.1 The Chessboard . 79

8.2 Sierpinkski Triangle . 80

8.3 Auxiliary Parameters . 80

8.4 Nested Methods . 84

8.5 Exercises . 87

9 Horঞculture and Higher-order Funcঞons 89

9.1 Funcঞons . 89

9.2 Parametric Curves . 93

9.3 Points . 94

9.4 Flexible Layout . 95

9.5 Geometry . 98

9.6 Puমng It All Together . 98

9.7 Flowers and Other Curves . 100

9.8 Higher Order Methods and Funcঞons . 105

9.9 Exercises . 111

9.10 Conclusions . 113

CONTENTS 5

10 Shapes, Sequences, and Stars 115

10.1 Paths . 115

10.2 Working with Lists . 118

10.3 Transforming Sequences . 123

10.4 My God, It’s Full of Stars! . 129

11 Animaঞon and Fireworks 133

11.1 Reactors . 133

11.2 Easing Funcঞons . 134

12 Turtle Algebra and Algebraic Data Types 137

12.1 Turtle Graphics . 137

12.2 Controlling the Turtle . 138

12.3 Branching Structures . 142

12.4 Exercises . 146

13 Composiঞon of Generaঞve Art 149

13.1 Generaঞve Art . 149

13.2 Randomness without Effect . 151

13.3 Combining Random Values . 153

13.4 Exploring Random . 158

13.5 For Comprehensions . 162

13.6 Exercises . 163

14 Algebraic Data Types To Call Our Own 165

14.1 Algebraic Data Types . 165

14.2 Build Your Own Turtle . 167

15 Summary 169

15.1 Representaঞons and Interpreters . 169

15.2 Abstracঞon . 169

15.3 Composiঞon . 170

15.4 Expression-Oriented Programming . 170

15.5 Types are a Safety Net . 170

15.6 Funcঞons as Values . 171

15.7 Final Words . 172

15.8 Next Steps . 172

6 CONTENTS

A Syntax Quick Reference 175

A.1 Literals and Expressions . 175

A.2 Value and Method Declaraঞons . 175

A.3 Funcঞons as Values . 176

A.4 Doodle Reference Guide . 177

B Soluঞons to Exercises 181

B.1 Expressions, Values, and Types . 181

B.2 Compuঞng With Pictures . 183

B.3 Wriঞng Larger Programs . 188

B.4 The Subsঞtuঞon Model of Evaluaঞon . 190

B.5 Methods . 192

B.6 Structural Recursion . 193

B.7 Fractals . 196

B.8 Horঞculture and Higher-order Funcঞons . 199

B.9 Shapes, Sequences, and Stars . 205

B.10 Turtle Algebra and Algebraic Data Types . 215

B.11 Composiঞon of Generaঞve Art . 218

B.12 Algebraic Data Types To Call Our Own . 225

Foreword

Creaঞve Scala is aimed at developers who have no prior experience in Scala. It is designed to give you a fun
introducঞon to funcঞonal programming. We assume you have some very basic familiarity with another pro-
gramming language but li�le or no experience with Scala or other funcঞonal languages.

We have three goals with this book:

1. To give an introducঞon to funcঞonal programming so that you can calculate and reason about programs,
and pick up and understand other introductory books on funcঞonal programming.

2. To teach you enough Scala that you can explore your own interests in and using Scala.

3. To present all this in a fun, gentle, and interesঞng way via two-dimensional computer graphics.

Our moঞvaঞon comes from our own experience learning programming, studying funcঞonal programming, and
teaching Scala to commercial developers.

Firstly, we believe that funcঞonal programming is the future. Since we’re assuming you have li�le programming
experiencewewon’t go into the details of the differences between funcঞonal programming and object-oriented
programming that you may have already experienced. Suffice to say there are different ways to think about and
write computer programs, and we’ve chosen the funcঞonal programming approach.

The reason for choosing funcঞonal programming are more interesঞng. It’s common to teach programming by
what we call the “bag of syntax” approach. In this approach a programming language is taught a collecঞon
of syntacঞcal features (variables, for loops, while loops, methods) and students are le[to figure out on their
own when to use each feature. We’ve seen this method fail both when we were undergraduates learning
programming, and as postgraduates teaching programming, as students simply have no systemaঞc way to break
down a problem and turn it into code. The result is that many students dropped out due to the poor quality of
teaching. The students that remained tended to, like us, already have extensive programming experience.

Let’s think back to primary school maths, specifically column addiঞon. This is the basic way we’re taught to
add up numbers when they’re too big to do in our head. So, for example, adding up 266 + 385, we would line
up the columns, carry the tens and so on. Now maybe maths wasn’t your favorite subject but there are some
important lessons here. The first is that we’re given a systemaঞc way to arrive at the soluঞon. We can calculate
the soluঞon once we realise this is a problem that requires column addiঞon. The second point is that we don’t
even have to understand why column addiঞon works (though it helps) to use it. So long as we follow the steps
we’ll get the correct answer.

The remarkable thing about funcঞonal programming is that it works like column addiঞon. We have recipes that
are guaranteed to give us the correct answer if we follow them correctly. We call this calculaࢼng a program.
This is not to say that programming is without creaঞvity, but the challenge is to understand the structure of
the problem and once we’ve done that the recipe we should use follows immediately. The code itself is not the
interesঞng part.

We’re teaching funcঞonal programming using Scala, but not Scala itself. Scala is a language that is in demand
right now. Scala programmers can relaঞvely easily get jobs in a variety of industries, and this is an important

7

8 CONTENTS

moঞvaঞon for learning Scala. One of the reasons for Scala’s popularity is that is straddles object-oriented
programming, the old way of programming, and funcঞonal programming. There is a lot of code wri�en in an
object-oriented style, and a lot of programmers who are used to that style. Scala gives a gentle way from
object-oriented programming to funcঞonal programming. However this means Scala is a large language, and
the interacঞon between the object-oriented and funcঞonal parts can be confusing. We believe that funcঞonal
programming is much more effecঞve than object-oriented programming, and for new programmers there is
no need to add the confusion of learning object-oriented techniques at the same ঞme. That can come later.
Therefore this book is exclusively using the funcঞonal programming parts of Scala.

Finally, we’ve chosen what we hope is a fun method to explore funcঞonal programming and Scala: computer
graphics. There are many introducঞons to Scala, but the majority use examples that either relate to business
or mathemaঞcs. For example, one of the first exercises in the very popular Coursera course is to implement
sets via indicator funcঞons. We feel if you’re the type of person who likes directly working with these sort
of concepts you already have plenty of content available. We want to target a different group: people who
perhaps thought that maths was not for them but nonetheless have an interest or appreciaঞon in the visual
arts. We won’t lie: there is maths in this book, but we hope we manage to moঞvate and indeed visualise the
concepts in a way that makes them less inঞmidaঞng.

Although this book will give you the basic mental model required to become competent with Scala, you won’t
finish knowing everything you need to be self-sufficient. For further advancement we recommend considering
one of the many excellent Scala textbooks out there, including our own Essenঞal Scala.

If you are working through the exercises on your own, we highly recommend joining our Gi�er chat room to
provide get help with the exercises and provide feedback on the book.

The text of Creaঞve Scala is open source, as is the source code for the Doodle drawing library used in the
exercises. You can grab the code from our GitHub account. Contact us on Gi�er or by email if you would like
to contribute.

Thanks for downloading and happy creaঞve programming!

—Dave and Noel

Notes on the Early Access Ediঞon

This is an early access release of Creaঞve Scala. There may be typos and other errors in the text and
examples.

If you spot any mistakes or would like to provide feedback, please let us know via our Gi�er chat room or
by email:

• Dave Gurnell (dave@underscore.io)
• Noel Welsh (noel@underscore.io)

Acknowledgements

Creaঞve Scala was wri�en by Dave Gurnell and Noel Welsh. Many thanks to Richard Dallaway, Jonathan
Ferguson, and the team at Underscore for their invaluable contribuঞons and extensive proof reading.

Thanks also to the many people who pointed out errors or made suggesঞons to improve the book: Neil Moore;
Kelley Robinson, Julie Pi�, and the other ScalaBridge organizers; d43; Ma� Kohl; Alexa Kovachevich and all the
other students who worked through Creaঞve Scala at ScalaBridge, at another event, or on their own; and the

http://underscore.io/training/courses/essential-scala
https://gitter.im/underscoreio/scala
https://github.com/underscoreio/creative-scala
https://github.com/underscoreio/doodle
https://github.com/underscoreio
https://gitter.im/underscoreio/scala
mailto:dave@underscore.io
mailto:noel@underscore.io
http://twitter.com/davegurnell
http://twitter.com/noelwelsh
http://twitter.com/d6y
http://twitter.com/jonoabroad
http://twitter.com/jonoabroad
http://underscore.io

CONTENTS 9

many awesomemembers of the Scala community who gave us comments and suggesঞons in person. Finally, we
have large amount of graঞtude for Bridgewater, and parঞcularly Lauren Cipicchio, who perhaps unknowingly
funded a good porঞon of the iniঞal development of the second version of the Creaঞve Scala, and provided the
first few rounds of students.

Finally, Creaঞve Scala owes a large intellectual debt to the work of many researchers working in programming
language theory and Computer Science educaঞon. In parঞcular we’d like to highlight:

• the work of the PLT research group, and in parঞcular the book “How to Design Programs”, by Ma�hew
Fla�, Ma�hias Felleisen, Robert Bruce Findler, and Shriram Krishnamurthi; and

• the “creaঞve coding” approach to introductory programming pioneered byMark Guzdial, Dianna Xu, and
others.

http://racket-lang.org/plt.html
http://htdp.org/
https://www.cc.gatech.edu/faculty/mark.guzdial/
https://cs.brynmawr.edu/~dxu/

10 CONTENTS

Chapter 1

Geমng Started

Our first step is to install the so[ware we need to work with Creaঞve Scala. We describe two pathways here:

1. Working with a text editor and a terminal. We recommend this setup to people completely new to program-
ming as there are fewer moving parts.

2. Working with IntelliJ IDEA. We recommend this setup to people who are used to using an IDE or are
uncomfortable with the terminal.

If you’re an experienced developer with a setup you are happy with just keep the tools you know and adapt the
instrucঞons below as needed.

If all this stuff is new to you, the rest of the chapter has some background.

1.1 Installing Terminal So[ware and a Text Editors

This secঞon is our recommended setup for people new to programming, and describes how to setup Creaঞve
Scala with the terminal and a text editor. We need to install:

• the JVM;
• Git;
• a text editor; and
• the template project for Creaঞve Scala.

1.1.1 OS X

Open the terminal. (Click the magnifying glass icon on the top righthand side of the toolbar. Type in “terminal”.)

Install Java. Type into the terminal

java

If this runs you already have Java installed. Otherwise it will prompt you to install Java.

Install homebrew. Paste into the terminal

11

12 CHAPTER 1. GETTING STARTED

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Install git using homebrew. At the terminal, type

brew install git

Now install the text editor Atom. Again type at the terminal

brew install Caskroom/cask/atom

Install Scala support inside Atom: Seমngs > Install > language-scala

Now we will use Git to get an SBT project that will work with Creaঞve Scala. Type

git clone https://github.com/underscoreio/creative-scala-template.git

Sharing Your Work

There is an alternaঞve setup that involves first forking the Creaঞve Scala template project, and then
cloning it to your computer. This is the setup to choose if you want to share your work with other people;
for example you might be taking Creaঞve Scala with a remote instructor or you might just (quite righ�ully)
be proud of your work.

In this setup you first fork the Creaঞve Scala template. Then youmake a clone of your fork. This alternaঞve
setup is described in more detail in the secঞon on GitHub later in this chapter.

Now change to the directory we just created and run SBT.

cd creative-scala-template

./sbt.sh

SBT should start. Within SBT type console. Finally type

Example.image.draw()

and an image of three circles should appear!

If you’ve made it this far you’ve successfully installed all the so[ware you need for work through Creaঞve Scala.

The final step is to load Atom and use it to open Example.scala, which you can find in src/main/scala.

1.1.2 Windows

Download and install Java. Search for the “JDK” (Java development kit). This will take you to Oracle’s site.
Accept their license and download the JDK. Run the installer you just downloaded.

Download and install Atom. Go to https://atom.io/ and download Atom for Windows. Run the installer
you’ve just downloaded.

Download and install Git. Go to https://git-scm.com/ and download Git for Windows. Run the installer
you’ve just downloaded. At the very end it gives you the opঞon to open Git. Select that opঞon. A window will
open up with a command prompt. Type

1.2. INTELLIJ 13

git clone https://github.com/underscoreio/creative-scala-template.git

Sharing Your Work

There is an alternaঞve setup that involves first forking the Creaঞve Scala template project, and then
cloning it to your computer. This is the setup to choose if you want to share your work with other people;
for example you might be taking Creaঞve Scala with a remote instructor or you might just (quite righ�ully)
be proud of your work.

In this setup you first fork the Creaঞve Scala template. Then youmake a clone of your fork. This alternaঞve
setup is described in more detail in the secঞon on GitHub later in this chapter.

Open a normal command-prompt. Click on the Windows icon on the bo�om le[of the screen. In the search
box enter “cmd” and run the program it finds. In the window that is opened up type

cd creative-scala-template

which will change into the directory of the Creaঞve Scala template project we just downloaded. Type

sbt.bat

to start SBT. Within SBT type console. Finally type

Example.image.draw()

and an image of three circles should appear!

If you’ve made it this far you’ve successfully installed all the so[ware you need for work through Creaঞve Scala.

The final step is to load Atom and use it to open Example.scala, which you can find in the directory
src\main\scala.

1.1.3 Linux

Follow the OS X instrucঞons, using your distribuঞons package manager to install so[ware in place of Home-
brew.

1.2 IntelliJ

IntelliJ is an integrated development environment (IDE) for Scala and other programming languages. It integrates
an number of programming tools into one applicaঞon, and we recommend it for people who are used to using
other IDEs such as Visual Studiol or Eclipse.

Start by downloading and installing IntelliJ. You can use the free community ediঞon for Creaঞve Scala. When
installing IntelliJ you will be asked a lot of quesঞons. You can accept the defaults for the most part. When you
are asked about “featured plugins”, make sure you install the Scala plug-in.

https://www.jetbrains.com/idea/download/

14 CHAPTER 1. GETTING STARTED

Once you have completed the configuraঞon you will be presented with a dialog asking if you want to create a
new project, import a project, open a file, or check out from version control. Choose “checkout from version
control”, and select GitHub.

In the dialog box that opens change “Auth type” to Token. Now visit GitHub in a web browser. Select your
account (top right hand of the page). Choose “Seমngs” and then choose “Personal access tokens”. Generate a
token. Call it “intellij” and select the “repo” check box. Copy the long string of numbers and text and paste it
into the “Token” box. Now login to GitHub.

Install the SBT console add-on.

1.3 Background

This secঞon gives some background informaঞon on some of the tools we’ll be using. If you’re an experienced
developer a lot of this will be old hat, and you can skip it. If you’re not, this will hopefully give some useful
context to the so[ware we’ll be working with.

1.3.1 The Terminal

Back when the world was young and compuঞng was in its infancy, the common user interface of graphical
windows, a cursor controlled by a mouse, and interacঞon by direct manipulaࢼon didn’t exist. Instead users
typed in commands at a device called a terminal. The direct manipulaঞon interface is superior for most uses,
but there are some cases for which the terminal or command line is preferable. For example, if we wanted to
work out how much space was used by all the files which names starঞng with data in Linux or OS X we can
execute the command

du -hs data*

We can break this down into three components:

• the command du means disk usage;
• the flags -hs mean to print a human readable summary; and
• the pa�ern data* means all the files whose names begin with data.

Doing this with a direct manipulaঞon interface would be much more ঞme consuming.

The command line has a steep learning curve, but the reward is an extremely powerful tool. Our usage of the
terminal will be very limited, so don’t worry if you find the example above inঞmidaঞng!

1.3.2 Text Editors

You’re probably used to wriঞng documents in a word processor. A word processor allows us to write text and
control the formaমng of how it appears on the (increasingly rare) printed page. A word processor includes
powerful commands, such as a spell checker and automaঞc table of contents generaঞon, to make ediঞng prose
easier.

A text editor is like a word processor for code. Whereas a word processor is concerned about visual presentaঞon
of text, a text editor has many programming specific funcঞons. Typical examples include powerful tools to
search and replace text, and the ability to quickly jump between the many different files that make up a project.

1.3. BACKGROUND 15

Text editors date back to the days of terminals and perhaps surprisingly some of these tools are sঞll in use. The
two main ancient and glorious text editors that survive are called Emacs and Vim. They have very different
approaches (except when they don’t) and developers tend to use one or the other. I’ve been using Emacs for
about twenty years, and thus I know in my bones that Emacs is the greatest of all possible text editors and Vim
users are knuckle-draggers lumbered with poor taste and an inferior tool. Vim users no doubt think the same
about me.

If there is one thing that unites Vim and Emacs users it’s the sure knowledge that new-fangled text editors like
Sublime Text and Atom are bringing about the downfall of our civilizaঞon. Nonetheless we recommend using
Atom if you’re new to this text ediঞng game. Both Vim and Emacs were created before the common interfaces
in use today were created, and using them requires learning a very different way of working.

1.3.3 The Compiler

The codewewrite in a text editor is not in a form that a computer can run. A compiler translates it into something
the computer can run. As it does this it performs certain checks on the code. If these checks don’t pass the
code won’t be compiled and the compiler will print an error message instead. We’ll learn more about what the
compiler can check and what it can’t in the rest of this book.

Whenwe said the compiler translates the code is something the computer can run, this is not the complete truth
in the case of Scala. The output of the compiler is something called bytecode, and another program, called the
Java Virtual Machine (JVM), runs this code¹.

1.3.4 Integrated Development Environments

Integrated development environments (IDEs) are an alternaঞve approach that combine a text editor, a compiler,
and several other programmer tools into a single program. Some people swear by IDEs, while some people
prefer to use the terminal and a text editor. Our recommendaঞon if you’re new to programming is to take the
terminal-and-text-editor approach. If you’re already used to an IDE then IntelliJ IDEA is currently the best IDE
for Scala development.

1.3.5 Version Control

Version control is the final tool we’ll use. A version control system is a program that allows us to keep a record
of all the changes that have been made to a group of files. It’s very useful for allowing mulঞple people to work
on a project at the same ঞme, and it ensures people don’t accidentally overwrite each others changes. This is
not a huge concern in Creaঞve Scala, but it is good to get some exposure to version control now.

The version control so[ware we’ll use is called Git. It’s powerful but complex. The good news is we don’t need
to learn much about Git. Most of our use of Git will be via a website called GitHub, which allows people to
share so[ware that is stored in Git. We use GitHub to share the so[ware used in Creaঞve Scala.

1.3.6 Onward!

Now that we’ve got some background, let’s move on to installing the so[ware we need to write Scala code.

¹This is not itself the enঞre truth! We usually run Scala code on the JVM, but we can actually compile Scala to three different
formats. The first and most common is JVM bytecode. We can also compiled to Javascript, another programming language, which
allows us to run Scala code in a web browser. Finally, Scala Naঞve will compile Scala to something a computer can run directly without
requiring the JVM.

16 CHAPTER 1. GETTING STARTED

1.4 GitHub

We have created a template for you that will get you set up with all the code you need to work through Creaঞve
Scala. This template is stored on GitHub, a website for sharing code.

You can copy the template onto your computer, which Git calls cloning, but this means you won’t be able to
save any changes you make back to GitHub where other people can view them.

If you want to be able to share your changes, you need to make a copy of the template project on GitHub that
you own. Git calls this forking. You fork the repository on GitHub and then clone your fork to your computer.
Then you can save your changes back to your fork on GitHub.

To start this process you need to create a GitHub account, if you do not have one already.

Once you have an account, visit the template project in your browser. At the top right is bu�on called “Fork”.
Press this bu�on to create your own copy of the template. You will be taken to a web page displaying your own
fork of the template. Remember the name of this repository. It should be something like yourname/creative-
scala-template where yourname is your GitHub user name.

Now cloning your fork is as simple as running this command and replacing yourname with your actual GitHub
user name.

git clone git@github.com:yourname/creative-scala-template.git

Now any changes you make can be sent back to your fork on GitHub. The process for doing this in Git is a bit
involved. When you’ve made a change you must:

• add the change to what’s called Git’s index;
• commit the change; and finally
• push the change to the fork.

Here’s an example of using the command line to do this.

git add

git commit -m "Explain here what you did"

git push

GitHub makes a nice free graphical tool for using Git, called GitHub Desktop. It’s probably the easiest way to
use Git when you’re geমng started.

https://github.com/underscoreio/creative-scala-template
https://github.com/
https://github.com/creativescala/creative-scala-template
https://desktop.github.com/

Chapter 2

Expressions, Values, and Types

Scala programs have three fundamental building blocks: expressions, values, and types. In this secঞon, we ex-
plore these concepts.

Here’s a very simple expression:

1 + 2

An expression is a fragment of Scala code. We can write expressions in a text editor, or on a piece of paper, or
on a wall; expressions are like wriঞng. Just like wriঞng must be read for it to have any effect on the world (and
the reader has to understand the language the wriঞng is wri�en in), the computer must run an expression for
it to have an effect. The result of running an expression is a value. Values live in the computer’s memory, in the
same way that the result of reading some wriঞng lives in the reader’s head. We will also say expressions are
evaluated or executed to describe the process of transforming them into values.

We can evaluate expressions immediately by wriঞng them at the console and pressing “Enter” (or “Return”). Try
it now.

1 + 2

// res1: Int = 3

The console responds with the value the expression evaluates to, and the type of the expression.

The expression 1 + 2 evaluates to the value 3. We can write down the number three here on the page, but
the real value is something stored in the computer’s memory. In this case, it is a 32-bit integer represented in
two’s-complement. The meaning of “32-bit integer represented in two’s-complement” is not important. We
just menঞon it to emphasize the fact the computer’s representaঞon of the value 3 is the true value, not the
numeral wri�en here or displayed by the console.

Types are the final piece of the puzzle. A type describes a set of values. The expression 1 + 2 has the type
Int, which means the value the expression evaluates to will be one of the over four billion values the computer
understands to be integers. We determine the type of an expression without running it, which is why the type
Int doesn’t tell us which specific value the expression evalutes to.

Before a Scala program is run, it must be compiled. Compilaঞon checks that a program makes sense. It must
be syntacঞcally correct, meaning it must be wri�en according to the rules of Scala. For example (1 + 2) is
syntacঞcally correct, but (1 + 2 is not because there is no) to match the (. It must also type check, meaning
the types must be correct for the operaঞons we’re trying to do. 1 + 2 type checks (we are adding integers),
but 1.toUpperCase does not (there is no concept of upper and lower case for integers.)

17

18 CHAPTER 2. EXPRESSIONS, VALUES, AND TYPES

Only programs that successfully compile can be run. We can think of compilaঞon as being analogous to the
rules of grammar in wriঞng. The sentence “FaRf Urmn;l df.fd” is syntacঞcally incorrect in English. The arrange-
ment of le�ers doesn’t form any words. The sentence “dog fly a here no” is made out of valid words but their
arrangement breaks the rules of grammar—analogous to the type checks that Scala performs.

It is important to remember that type checking is done before a program runs. If you have used a language like
Python or Javascript, which are someঞmes called “dynamically typed”, there is no type checking done before a
program runs. In a “staঞcally typed” language like Scala the type checking catches some potenঞal errors for us
before we run the code. What is someঞmes called a type in a dynamically typed language is not a type as we
understand it. Types, for us, exist at at the ঞme when a program is compiled, which we will call compile .meࢼ At
ঞme when a program runs, which we call run ,meࢼ we have only values. Values may record some informaঞon
about the type of the expression that created them. If they do we call these tags, or someঞmes boxes. Not
all values are tagged or boxed. Avoiding tagging, which is also called type erasure, allows for more efficient
programs.

2.1 Literal Expressions

We’ll now start to explore the various forms of expressions in Scala, starঞng with the simplest expressions,
literals. Here’s a literal expression:

3

// res0: Int = 3

A literal evaluates to “itself.” How we write the expression and how the console prints the value are the same.
Remember though, there is a difference between the wri�en representaঞon of a value and its actual represen-
taঞon in the computer’s memory.

Scala has many different forms of literals. We’ve already seen Int literals. There is a different type, and a dif-
ferent literal syntax, for what are called floaࢼng point numbers. This corresponds to a computer’s approximaঞon
of the real numbers. Here’s an example:

0.1

// res1: Double = 0.1

As you can see, the type is called Double.

Numbers are well and good, but what about text? Scala’s String type represents a sequence of characters.
We write literal strings by puমng their contents in double quotes.

"To be fond of dancing was a certain step towards falling in love."

// res2: String = "To be fond of dancing was a certain step towards falling in love."

Someঞmes we want to write strings that span several lines. We can do this by using triple double quotes, as
below.

"""

A new, a vast, and a powerful language is developed for the future use of analysis,

in which to wield its truths so that these may become of more speedy and accurate

practical application for the purposes of mankind than the means hitherto in our

possession have rendered possible.

-- Ada Lovelace, the world's first programmer

"""

// res3: String = """

// A new, a vast, and a powerful language is developed for the future use of analysis,

2.2. VALUES ARE OBJECTS 19

// in which to wield its truths so that these may become of more speedy and accurate

// practical application for the purposes of mankind than the means hitherto in our

// possession have rendered possible.

//

// -- Ada Lovelace, the world's first programmer

// """

A String is a sequence of characters. Characters themselves have a type, Char, and character literals are
wri�en in single quotes.

'a'

// res4: Char = 'a'

Finally we’ll look at the literal representaঞons of the Boolean type, named a[er English logician George Boole.
This fancy name just means a value that can be either true or false, and this indeed is how we write boolean
literals.

true

// res5: Boolean = true

false

// res6: Boolean = false

With literal expressions, we can create values, but we won’t get very far if we can’t somehow manipulate
the values we’ve created. We’ve seen a few examples of more complex expressions like 1 + 2. In the next
secঞon, we’ll learn about objects andmethods, which will allow us to understand how this, andmore interesঞng
expressions, work.

2.2 Values are Objects

In Scala all values are objects. An object is a grouping of data and operaঞons on that data. For example, 2 is an
object. The data is the integer 2, and the operaঞons on that data are familiar operaঞons like +, -, and so on. We
call operaঞons of an object the object’s methods.

2.2.1 Method Calls

We interact with objects by calling or invoking methods. For example, we can get the uppercase version of a
String by calling its toUpperCase method.

"Titan!".toUpperCase

// res0: String = "TITAN!"

Some methods accept parameters or arguments, which control how the method works. The take method, for
example, takes characters from a String. We must pass a parameter to take to specify how many characters
we want.

"Gilgamesh went abroad in the world".take(3)

// res1: String = "Gil"

"Gilgamesh went abroad in the world".take(9)

// res2: String = "Gilgamesh"

Amethod call is an expression, and thus evaluates to an object. This means we can chain method calls together
to make more complex programs:

https://en.wikipedia.org/wiki/George_Boole

20 CHAPTER 2. EXPRESSIONS, VALUES, AND TYPES

"Titan!".toUpperCase.toLowerCase

// res3: String = "titan!"

Method Call Syntax

The syntax for a method call is

anExpression.methodName(param1, ...)

or

anExpression.methodName

where

• anExpression is any expression (which evaluates to an object)
• methodName is the name of the method
• the opঞonal param1, ... are one or more expressions evaluaঞng to the parameters to the

method.

2.2.2 Operators

Wehave said that all values are objects, andwe call methodswith the syntaxobject.methodName(parameter).
How then do we explain expressions like 1 + 2?

In Scala, and expression wri�en a.b(c) can be wri�en a b c. So these are equivalent:

1 + 2

// res4: Int = 3

1.+(2)

// res5: Int = 3

This first way of calling a method is known an operator style.

Infix Operator Notaঞon

Any Scala expression wri�en a.b(c) can also be wri�en a b c.

Note that a b c d e is equivalent to a.b(c).d(e), not a.b(c, d, e).

2.3 Types

Now that we can write more complex expressions, we can talk a li�le more about types.

One use of types is stopping us from calling methods that don’t exist. The type of an expression tells the
compiler what methods exist on the value it evaluates to. Our code won’t compile if we try to call to a method
that doesn’t exist. Here are some simple examples.

2.3. TYPES 21

"Brontë" / "Austen"

1.take(2)

// error: value / is not a member of String

// "Brontë" / "Austen"

// ^^^^^^^^^^

// error: value take is not a member of Int

// 1.take(2)

// ^^^^^^

It really is the type of the expression that determines what methods we can call, which we can demonstrate by
calling methods on the result of more complex expressions.

(1 + 3).take(1)

// error: value take is not a member of Int

// (1 + 3).take(1)

// ^^^^^^^^^^^

This process of type checking also applies to the parameter of methods.

1.min("zero")

// error: type mismatch;

// found : String("zero")

// required: Int

// 1.min("zero")

// ^^^^^^

Types are a property of expressions and thus exist at compile ঞme (as we have discussed before.) This means
we can determine the type of an expression even if evaluaঞng it results in an error at run ঞme. For example,
dividing an Int by zero causes a run-ঞme error.

1 / 0

// java.lang.ArithmeticException: / by zero

// at repl.Session$App$$anonfun$4.apply$mcI$sp(types.md:27)

// at repl.Session$App$$anonfun$4.apply(types.md:27)

// at repl.Session$App$$anonfun$4.apply(types.md:27)

The expression 1 / 0 sঞll has a type, and we can get that type from the console as shown below.

:type 1 / 0

// Int

We can also write a compound expression including a sub-expression that will fail at run-ঞme.

(2 + (1 / 0) + 3)

// java.lang.ArithmeticException: / by zero

// at repl.Session$App$$anonfun$5.apply$mcI$sp(types.md:35)

// at repl.Session$App$$anonfun$5.apply(types.md:35)

// at repl.Session$App$$anonfun$5.apply(types.md:35)

This expression also has a type.

:type (2 + (1 / 0) + 3)

// Int

22 CHAPTER 2. EXPRESSIONS, VALUES, AND TYPES

2.4 Exercises

2.4.0.1 Arithmeঞc

Write an expression using integer literals, addiঞon, and subtracঞon that evaluates to 42.

See the soluঞon

2.4.0.2 Appending Strings

Join together two strings (known as appending strings) using the ++method. Write equivalent expressions using
both the normal method call style and the operator style.

See the soluঞon

2.4.0.3 Precedence

In mathemaঞcs we learned that some operators take precedence over others. For example, in the expression 1
+ 2 * 3 we should do the mulঞplicaঞon before the addiঞon. Do the same rules hold in Scala?

See the soluঞon

2.4.0.4 Types and Values

Which of the following expressions will not compile? Of the expressions that will compile, what is their type?
Which expressions fail at run-ঞme?

1 + 2

"3".toInt

"Electric blue".toInt

// java.lang.NumberFormatException: For input string: "Electric blue"

// at java.lang.NumberFormatException.forInputString(NumberFormatException.java:65)

// at java.lang.Integer.parseInt(Integer.java:580)

// at java.lang.Integer.parseInt(Integer.java:615)

// at scala.collection.immutable.StringLike.toInt(StringLike.scala:304)

// at scala.collection.immutable.StringLike.toInt$(StringLike.scala:304)

// at scala.collection.immutable.StringOps.toInt(StringOps.scala:33)

// at repl.Session$App$$anonfun$9.apply$mcI$sp(exercises.md:48)

// at repl.Session$App$$anonfun$9.apply(exercises.md:48)

// at repl.Session$App$$anonfun$9.apply(exercises.md:48)

"Electric blue".take(1)

"Electric blue".take("blue")

1 + ("Moonage daydream".indexOf("N"))

1 / 1 + ("Moonage daydream".indexOf("N"))

1 / (1 + ("Moonage daydream".indexOf("N")))

// java.lang.ArithmeticException: / by zero

// at repl.Session$App$$anonfun$14.apply$mcI$sp(exercises.md:80)

2.4. EXERCISES 23

// at repl.Session$App$$anonfun$14.apply(exercises.md:80)

// at repl.Session$App$$anonfun$14.apply(exercises.md:80)

See the soluঞon

2.4.0.5 Floaঞng Point Failings

When we introduced Doubles, I said they are an approximaঞon to the real numbers. Why do you think this is?
Think about represenঞng numbers like ⅓ and π. How much space would it take to represent these numbers in
decimal?

See the soluঞon

2.4.0.6 Beyond Expressions

In our current model of computaঞon there are only three components: expressions (program text) with types,
that evaluate to values (something within the computer’s memory). Is this sufficient? Could we write a stock
market or a computer game with just this model? Can you think of ways to extend this model?

See the soluঞon

24 CHAPTER 2. EXPRESSIONS, VALUES, AND TYPES

Chapter 3

Compuঞng With Pictures

So far we have computed using numbers, strings, and other simple objects. From here on out we will focus
our a�enঞon on compuঞng with pictures, and later with animaঞons. Pictures offer us more immediate creaঞve
opportuniঞes, and they make our program output tangible in a way that other methods can’t deliver.

We’ll use a library called Doodle to help us with creaঞng graphics. In this chapter we will learn the basics of
Doodle.

If you run the examples from the SBT console within Doodle they will just work. If not, you will need to
start your code with the following imports to make Doodle available.

import doodle.core._

import doodle.image._

import doodle.image.syntax._

import doodle.image.syntax.core._

import doodle.java2d._

3.1 Images

Let’s start with some simple shapes, programming at the console as we’ve done before.

Image.circle(10)

// res0: Image = Circle(10.0)

What is happening here? Image is an object and circle a method on that object. We pass to circle a
parameter, 10 that gives the diameter of the circle we’re construcঞng. Note the type of the result—an Image.

Image.circle(10)

// res1: Image = Circle(10.0)

We draw the circle by calling the draw method.

Image.circle(10).draw()

A window should appear as shown in fig. 3.1.

Doodle supports a handful of “primiঞve” images: circles, rectangles, and triangles. Let’s try drawing a rectangle.

25

26 CHAPTER 3. COMPUTINGWITH PICTURES

Figure 3.1: A circle

Figure 3.2: A rectangle

Image.rectangle(100, 50).draw()

The output is shown in fig. 3.2.

Finally let’s try a triangle, for which the output is shown in fig. 3.3.

Image.triangle(60, 40).draw()

Figure 3.3: A triangle

3.2. LAYOUT 27

Figure 3.4: A circle beside a rectangle

Exercises

I Go Round in Circles

Create circles that are 1, 10, and 100 units wide. Now draw them!

See the soluঞon

My Type of Art

What is the type of a circle? A rectangle? A triangle?

See the soluঞon

Not My Type of Art

What’s the type of drawing an image? What does this mean?

See the soluঞon

3.2 Layout

We can seen how to create primiঞve images. We can combine together images using layouts methods to
create more complex images. Try the following code—you should see a circle and a rectangle displayed beside
one another, as in fig. 3.4.

(Image.circle(10).beside(Image.rectangle(10, 20))).draw()

Image contains several layout methods for combining images, described in tbl. 3.1. Try them out now to see
what they do.

Table 3.1: Layout methods available in Doodle

Method Parameter Descripঞon Example

beside Image Places images horizontally next
to one another

Image.circle(10)

.beside(Image.circle(10))

above Image Places images verঞcally next to
one another

Image.circle(10)

.above(Image.circle(10))

below Image Places images verঞcally next to
one another

Image.circle(10)

.below(Image.circle(10))

28 CHAPTER 3. COMPUTINGWITH PICTURES

Figure 3.5: The width of a circle

Method Parameter Descripঞon Example

on Image Places images centered on top
of one another

Image.circle(10)

.on(Image.circle(10))

under Image Places images centered on top
of one another

Image.circle(10)

.under(Image.circle(10))

Exercises

The Width of a Circle

Create the picture fig. 3.5 using the layout methods and basic images we’ve covered so far.

See the soluঞon

3.3 Color

In addiঞon to layout, Doodle has some simple operators to add a splash of colour to our images. Try these out
the methods described in tbl. 3.2 to see how they work.

Table 3.2: Some of the methods to add color to images in Doodle.

Method Parameter Descripঞon Example

fillColor Color Fills the image with the
specified color.

Image.circle(10)

.fillColor(Color.red)

strokeColor Color Outlines the image with
the specified color.

Image.circle(10)

.strokeColor(Color.blue)

strokeWdith Double Sets the width of the
image outline.

Image.circle(10)

.strokeWidth(3)

noFill None Removes any fill from
the image.

Image.circle(10).noFill

3.4. CREATING COLORS 29

Method Parameter Descripঞon Example

noStroke None Removes any stroke
from the image.

Image.circle(10).noStroke

Doodle has various ways of creaঞng colours. The simplest are the predefined colours in CommonColors.scala.
Some of the most commonly used are described in tbl. 3.3.

Table 3.3: Some of the most common predefined colors.

Color Type Example

Color.red Color Image.circle(10).fillColor(Color.red)

Color.blue Color Image.circle(10).fillColor(Color.blue)

Color.green Color Image.circle(10).fillColor(Color.green)

Color.black Color Image.circle(10).fillColor(Color.black)

Color.white Color Image.circle(10).fillColor(Color.white)

Color.gray Color Image.circle(10).fillColor(Color.gray)

Color.brown Color Image.circle(10).fillColor(Color.brown)

Exercises

Evil Eye

Make the image in fig. 3.6, designed to look like a tradiঞonal amulet protecঞng against the evil eye. I used
cornflowerBlue for the iris, and darkBlue for the outer color, but experiment with your own choices!

See the soluঞon

3.4 Creaঞng Colors

We’ve seen how to use predefined colors in our images. What about creaঞng our own colors? In this secঞon
we will see how to create colors of our own, and transform exisঞng colors into new ones.

3.4.1 RGB Colors

Computers work with colors defined by mixing together different amounts of red, green, and blue. This “RGB”
model is an addiঞve model of color, which means adding more colors gets us closer to white. This is the
opposiঞve of paint, which is a subtracঞve model where adding more paints gets us closer to black. Each red,
green, or blue component can have a value between zero and 255. If all three components are set to the
maximum of 255 we get pure white. If all components are zero we get black.

We can create our own RGB colors using the rgbmethod on the Color object. This method takes three param-
eters: the red, green, and blue components. These are numbers between 0 and 255, called an UnsignedByte¹.
There is no literal expression for UnsignedByte like there is for Int, so we must convert an Int to Unsigned-
Byte. We can do this with the uByte method. An Int can take on more values that an UnsignedByte, so if

¹A byte is a number with 256 possible values, which takes 8 bits within a computer to represent. A signed byte has integer values
from -128 to 127, while an unsigned byte ranges from 0 to 255.

https://github.com/underscoreio/doodle/blob/develop/shared/src/main/scala/doodle/core/CommonColors.scala
https://en.wikipedia.org/wiki/Additive_color

30 CHAPTER 3. COMPUTINGWITH PICTURES

Figure 3.6: No evil eyes here!

the number is too small or too large to be represented as a UnsignedByte it will be converted to the closest
values is the range 0 to 255. These examples illustrate the conversion.

0.uByte.get

// res0: Int = 0

255.uByte.get

// res1: Int = 255

128.uByte.get

// res2: Int = 128

-100.uByte.get // Too small, is transformed to 0

// res3: Int = 0 // Too small, is transformed to 0

1000.uByte.get // Too big, is transformed to 255

// res4: Int = 255

(Note that UnsignedByte is a feature of Doodle. It is not something provided by Scala.)

Now we know how to construct UnsignedBytes we can make RGB colors.

Color.rgb(255.uByte, 255.uByte, 255.uByte) // White

Color.rgb(0.uByte, 0.uByte, 0.uByte) // Black

Color.rgb(255.uByte, 0.uByte, 0.uByte) // Red

3.4.2 HSL Colors

The RGB color representaঞon is not very easy to use. The hue-saturaঞon-lightness (HSL) format more closely
corresponds to how we perceive color. In this representaঞon a color consists of:

• hue, which is an angle between 0 and 360 degrees giving a rotaঞon around the color wheel.
• saturaࢼon, which is a number between 0 and 1 giving the intensity of the color from a drab gray to a pure

color; and
• lightness between 0 and 1 giving the color a brightness varying from black to pure white.

fig. 3.7 shows how colors vary as we change hue and lightness, and fig. 3.8 shows the effect of changing satu-
raঞon.

We can construct a color in the HSL representaঞon using the Color.hslmethod. This method takes as param-
eters the hue, saturaঞon, and lightness. The hue is an Angle. We can convert a Double to an Angle using the
degrees (or radians) methods.

3.4. CREATING COLORS 31

Figure 3.7: A color wheel showing changes in hue (rotaঞons) and lightness (distance from the center) with
saturaঞon fixed at 1.

Figure 3.8: A gradient showing how changing saturaঞon effects color, with hue and lightness held constant.
Saturaঞon is zero on the le[and one on the right.

32 CHAPTER 3. COMPUTINGWITH PICTURES

Figure 3.9: Rendering pastel red in a triangle

0.degrees

// res8: Angle = Angle(0.0)

180.degrees

// res9: Angle = Angle(3.141592653589793)

3.14.radians

// res10: Angle = Angle(3.14)

Saturaঞon and lightness are both Doubles that should be between 0.0 and 1.0. Values outside this range will
be converted to the closest number within the range.

We can now create colors using the HSL representaঞon.

Color.hsl(0.degrees, 0.8, 0.6) // A pastel red

To view this color we can render it in a picture. See fig. 3.9 for an example.

3.4.3 Manipulaঞng Colors

The effecঞveness of a composiঞon o[en depends as much on the relaঞonships between colors as the actual
colors used. Colors have several methods that allow us to create a new color from an exisঞng one. The most
commonly used ones are:

• spin, which rotates the hue by an Angle;
• saturate and desaturate, which respecঞvely add and subtract a Normalised value from the color;

and
• lighten and darken, which respecঞvely add and subtract a Normalised value from the lightness.

For example,

Image.circle(100)

.fillColor(Color.red)

.beside(Image.circle(100).fillColor(Color.red.spin(15.degrees)))

3.4. CREATING COLORS 33

Figure 3.10: Three circles, starঞng with Color.red and spinning by 15 degrees for each successive circle

.beside(Image.circle(100).fillColor(Color.red.spin(30.degrees)))

.strokeWidth(5.0)

produces fig. 3.10.

Here’s a similar example, this ঞme manipulaঞng saturaঞon and lightness, shown in fig. 3.11.

Image.circle(40)

.fillColor(Color.red.darken(0.2.normalized))

.beside(Image.circle(40).fillColor(Color.red))

.beside(Image.circle(40).fillColor((Color.red.lighten(0.2.normalized))))

.above(Image.rectangle(40, 40).fillColor(Color.red.desaturate(0.6.normalized))

.beside(Image.rectangle(40,40).fillColor(Color.red.desaturate(0.3.normalized)))

.beside(Image.rectangle(40,40).fillColor(Color.red)))

3.4.4 Transparency

We can also add a degree of transparency to our colors, by adding an alpha value. An alpha value of 0.0 indi-
cates a completely transparent color, while a color with an alpha of 1.0 is completely opaque. The methods
Color.rgba and Color.hsla have a fourth parameter that is a Normalized alpha value. We can also create
a new color with a different transparency by using the alpha method on a color. Here’s an example, shown in
fig. 3.12.

Image.circle(40)

.fillColor(Color.red.alpha(0.5.normalized))

.beside(Image.circle(40).fillColor(Color.blue.alpha(0.5.normalized)))

.on(Image.circle(40).fillColor(Color.green.alpha(0.5.normalized)))

Exercises

Analogous Triangles

Create three triangles, arranged in a triangle, with analogous colors. Analogous colors are colors that are similar
in hue. See a (fairly elaborate) example in fig. 3.13.

See the soluঞon

34 CHAPTER 3. COMPUTINGWITH PICTURES

Figure 3.11: The top three circles show the effect of changing lightness, and the bo�om three squares show
the effect of changing saturaঞon.

Figure 3.12: Circles with alpha of 0.5 showing transparency

3.5. EXERCISES 35

Figure 3.13: Analogous triangles. The colors chosen are variaঞons on darkSlateBlue

3.5 Exercises

3.5.1 Compilaঞon Target

Create a line drawing of an archery target with three concentric scoring bands, as shown in fig. 3.14.

For bonus credit add a stand so we can place the target on a range, as shown in fig. 3.15.

See the soluঞon

3.5.2 Stay on Target

Colour your target red and white, the stand in brown (if applicable), and some ground in green. See fig. 3.16 for
an example.

See the soluঞon

36 CHAPTER 3. COMPUTINGWITH PICTURES

Figure 3.14: Simple archery target

Figure 3.15: Archery target with a stand

3.5. EXERCISES 37

Figure 3.16: Colour archery target

38 CHAPTER 3. COMPUTINGWITH PICTURES

Chapter 4

Wriঞng Larger Programs

We’re geমng to the point where it’s inconvenient to type programs into the console. In this chapter we’ll learn
about two tools for wriঞng larger programs:

• saving programs to a file so we don’t have to type code over and over again;
• giving names to values so we can reuse them.

If you run the examples from the SBT console within Doodle they will just work. If not, you will need to
start your code with the following imports to make Doodle available.

import doodle.core._

import doodle.image._

import doodle.image.syntax._

import doodle.image.syntax.core._

import doodle.java2d._

4.1 Working Within the Console

Your text editor or IDE will allow you to save code to a file, but we need to save files in the right place so the
Scala compiler can find them. If you’re working from the Doodle template you should save your code in the
directory src/main/scala/.

How do we use code that we saved to a file from the console? There is a special command, that only works
from the console, that allows us to run code saved in a file. This command is called :paste¹. We follow :paste

with the name of the file we want to run. For example, if we save in the file src/main/scala/Example.scala
the expression

Image.circle(100).fillColor(Color.paleGoldenrod).strokeColor(Color.indianRed)

we can then run this code by wriঞng at the console

¹There is also a command called :loadwhich works in a slightly different way to :paste. It compiles and runs each line in the file
on its own, while :paste compiles and runs the whole file in one go. They have subtly different semanঞcs. The way :paste works
is closer to how Scala code works outside the console, so we’ll use it in preference to :load.

39

40 CHAPTER 4. WRITING LARGER PROGRAMS

:paste src/main/scala/Example.scala

// res0: doodle.core.Image = ContextTransform(<function1>,ContextTransform(<function1>,Circle(100.0)

))

Note the value has been given the name res0 in the example above. If you’re following along, the name in your
console might end with a different number depending on what you’ve already typed into the console. We can
draw the image by evaluaঞng res0.draw (or the correct name for your console).

4.1.1 Tips for Using the Console

Here are a few ঞps for using the console more producঞvely:

• If you press the up arrow you’ll get the last thing you typed into the console. Handy to avoid having to
type in those long file names over and over again! You can press up mulঞple ঞmes to go through the
history of your interacঞons at the console.

• You can press the Tab key to get the console to suggest compleঞons for code, but unfortunately not file
names, you’re typing. For example, if you type Stri and then press Tab, the console will show possible
compleঞons. Type Strin and the console will complete String for you.

Once we start saving code to a file, we’ll likely find the compiler doesn’t like our code next ঞme we start
SBT. Read the next secঞon to see how we can fix this problem.

4.2 Coding Outside the Console

The code we’ve been wriঞng inside the console will cause problems running outside the console. For example,
put the following code into Example.scala in the src/main/scala.

Image.circle(100).fillColor(Color.paleGoldenrod).strokeColor(Color.indianRed)

Now restart SBT and try to enter the console. You should see an error similar to

[error] src/main/scala/Example.scala:1: expected class or object definition

[error] circle(100) fillColor Color.paleGoldenrod strokeColor Color.indianRed

[error] ^

[error] one error found

You’ll see something similar if you’re using an IDE.

The problem is this:

• Scala is a�empঞng to compile all our code before the console starts; and
• there are restricঞons on code wri�en in files that don’t apply to code wri�en directly in the console.

We need to know about these restricঞons and change how we write code in files accordingly.

The error message gives us some hint: expected class or object definition. We don’t yet know what
a class is, but we do know about objects—all values are objects. In Scala all code in a file must be wri�en inside
an object or class. We can easily define an object by wrapping an expression like the below.

4.2. CODING OUTSIDE THE CONSOLE 41

object Example {

Image.circle(100).fillColor(Color.paleGoldenrod).strokeColor(Color.indianRed).draw()

}

Now the code won’t compile for a different reason. You should see a lot of errors similar to

[error] doodle/shared/src/main/scala/doodle/examples/Example.scala:1: not found: value Image

[error] Image.circle(100).fillColor(Color.paleGoldenrod).strokeColor(Color.indianRed).draw()

[error] ^

The compiler is saying that we’ve used a name, circle, but the compiler doesn’t know what value this name
refers to. It will have a similiar issue with Color in the code above. We’ll talk in more details about names in
just a moment. Right now let’s tell the compiler where it can find the values for these names by adding some
import statements. The name Color is found inside a package called doodle.core, and the name circle is
within the object Image that is in doodle.image. We can tell the compiler to use all the name in doodle.core,
and all the names in doodle.image by wriঞng

import doodle.core._

import doodle.image._

There are a few other names that the compiler will need to find for the complete code to work. We can import
these with the lines

import doodle.image.syntax._

import doodle.image.syntax.core._

import doodle.java2d._

We should place all these imports at the top of the file, so the complete code looks like

import doodle.core._

import doodle.image._

import doodle.image.syntax._

import doodle.image.syntax.core._

import doodle.java2d._

object Example {

Image.circle(100).fillColor(Color.paleGoldenrod).strokeColor(Color.indianRed).draw()

}

With this in place the code should compile without issue.

Now when we go to the console within SBT we can refer to our code using the name, Example, that we’ve
given it.

Example // draws the image

Exercise

If you haven’t done so already, save the code above in the file src/main/scala/Example.scala and check
that the code compiles and you can access it from the console.

42 CHAPTER 4. WRITING LARGER PROGRAMS

4.3 Names

In the previous secঞon we introduced a lot of new concepts. In this secঞon we’ll explore one of those concepts:
naming values.

We use names to refer to things. For example, “Professeur Emile Perrot” refers to a very fragrant rose variety,
while “Cherry Parfait” is a highly disease resistant variety but barely smells at all. Much ink has been spilled, and
many a chin stroked, on how exactly this relaঞonship works in spoken language. Programming languages are
much more constrained, which allows us to be much more precise: names refer to values. We will someঞmes
say names are bound to values, or a name introduces a binding. Wherever we would write out a value we can
instead use its name, if the value has a name. In other words, a name evaluates to the value it refers to. This
naturally raises the quesঞon: how do we give names to values? There are several ways to do this in Scala. Let’s
see a few.

4.3.1 Object Literals

We have already seen an example of declaring an object literal.

object Example {

Image.circle(100).fillColor(Color.paleGoldenrod).strokeColor(Color.indianRed).draw()

}

This is a literal expression, like other literals we’ve seen so far, but in this case it creates an object with the name
Example. When we use the name Example in a program it evaluates to that object.

Example

// Example.type = Example$@76c39258

Try this in the console a few ঞmes. Do you noঞce any difference in uses of the name? You might have noঞced
that the first ঞme you entered the name Example a picture was drawn, but on subsequent uses this didn’t
happen. The first ঞme we use an object’s name the body of the object is evaluated and the object is created.
On subsequent uses of the name the object already exists and is not evaluated again. We can tell there is a
difference in this case because the expression inside the object calls the draw method. If we replaced it with
something like 1 + 1 (or just dropped the call to draw) we would not be able to tell the difference. We’ll have
plenty more to say about this in a later chapter.

We might wonder about the type of the object we’ve just created. We can ask the console about this.

:type Example

// Example.type

The type of Example is Example.type, a unique type that no other value has.

4.3.2 val Declaraঞons

Declaring an object literal mixes together object creaঞon and defining a name. It would be useful if we could
separate the two, so we could give a name to a pre-exisঞng object. A val declaraঞon allows us to do this.

We use val by wriঞng

4.3. NAMES 43

val <name> = <value>

replacing <name> and <value> with the name and the expression evaluaঞng to the value respecঞvely. For
example

val one = 1

val anImage = Image.circle(100).fillColor(Color.red)

These two declaraঞons define the names one and anImage. We can use these names to refer to the values in
later code.

one

// res0: Int = 1

anImage

// res1: Image = FillColor(

// Circle(100.0),

// RGBA(

// UnsignedByte(127),

// UnsignedByte(-128),

// UnsignedByte(-128),

// Normalized(1.0)

//)

//)

4.3.3 Declaraঞons

We’ve talked about declaraঞons and definiঞons above. It’s now ঞme to be precise about what these terms
mean, and to look in a bit more depth at the differences between object and val.

We already know about expressions. They are a part of a program that evaluates to a value. A declaraࢼon or
definiࢼon is another part of a program, but do not evaluate to a value. Instead they give a name to something—
not always to a value as you can declare types in Scala, though wewon’t spend much ঞme on this. Both object
and val are declaraঞons.

One consequence of declaraঞons being separate from expressions is we can’t write program like

val one = (val aNumber = 1)

because val aNumber = 1 is not an expression and thus does not evaluate to a value.

We can however write

val aNumber = 1

// aNumber: Int = 1

val one = aNumber

// one: Int = 1

4.3.4 The Top-Level

It seems a bit unsaঞsfactory to have both object and val declaraঞons, as they both give names to values.
Why not just have val for declaring names, and make object just create objects without naming them? Can
you declare an object literal without a name?

See the soluঞon

44 CHAPTER 4. WRITING LARGER PROGRAMS

Scala disঞnguishes between what is called the top-level and other code. Code at the top-level is code that
doesn’t have any other code wrapped around. In other words it is something we can write in a file and Scala
will compile without having to wrap it in an object.

We’ve seen that expressions aren’t allowed at the top-level. Neither are val definiঞons. Object literals, how-
ever, are.

This disঞncঞon is a bit annoying. Some other languages don’t have this restricঞon. In Scala’s case it comes
about because Scala builds on top of the Java Virtual Machine (JVM), which was designed to run Java code.
Java makes a disঞncঞon between top-level and other code, and Scala is forced to make this disঞncঞon to work
with the JVM. The Scala console doesn’t make this top-level disঞncঞon (we can think of everything wri�en in
the console being wrapped in some object) which can lead to confusion when we first start using Scala.

If an object literal is allowed at the top-level, but a val definiঞon is not, does this mean we can declare a val
inside an object literal? If we can declare a val inside an object literal, can we later refer to that name?

See the soluঞon

4.3.5 Scope

If you did the last exercise (and you did, didn’t you?) you’ll have seen that a name declared inside an object
can’t be used outside the object without also referring to the object that contains the name. Concretely, if we
declare

object Example {

val hi = "Hi!"

}

we can’t write

hi

// error: not found: value hi

We must tell Scala to look for hi inside Example.

Example.hi

// res8: String = "Hi!"

We say that a name is visible in the places where it can be used without qualificaঞon, and we call the places
where a name is visible its scope. So using our fancy-pants new terminology, hi is not visible outside of Example,
or alternaঞvely hi is not in scope outside of Example.

How dowework out the scope of a name? The rule is fairly simple: a name is visible from the point it is declared
to the end of the nearest enclosing braces (braces are { and }). In the example above hi is enclosed by the
braces of Example and so is visible there. It’s not visible elsewhere.

We can declare object literals inside object literals, which allows us to make finer disঞncঞons about scope. For
example in the code below

object Example1 {

val hi = "Hi!"

object Example2 {

val hello = "Hello!"

}

}

4.3. NAMES 45

hi is in scope in Example2 (Example2 is defined within the braces that enclose hi). However the scope of
hello is restricted to Example2, and so it has a smaller scope than hi.

What happens if we declare a name within a scope where it is already declared? This is known as shadowing. In
the code below the definiঞon of hi within Example2 shadows the definiঞon of hi in Example1

object Example1 {

val hi = "Hi!"

object Example2 {

val hi = "Hello!"

}

}

Scala let’s us do this, but it is generally a bad idea as it can make code very confusing.

We don’t have to use object literals to create new scopes. Scala allows us to create a new scope just about
anywhere by inserঞng braces. So we can write

object Example {

val good = "Good"

// Create a new scope

{

val morning = good ++ " morning"

val toYou = morning ++ " to you"

}

val day = good ++ " day, sir!"

}

morning (and toYou) is declared within a new scope. We have no way to refer to this scope from the outside (it
has no name) so we cannot refer to morning outside of the scope where it is declared. If we had some secrets
that we didn’t want the rest of the program to know about this is one way we could hide them.

Theway nested scopeswork in Scala is called lexical scoping. Not all languages have lexical scoping. For example,
Ruby and Python do not, and Javascript has only recently acquired lexical scoping. It is the authors’ opinion that
creaঞng a language without lexical scope is an idea on par with eaঞng a bushel of Guatemalan insanity peppers
and then going to the toilet without washing your hands.

Exercises

Test your understanding of names and scoping by working out the value of answer in each case below.

val a = 1

val b = 2

val answer = a + b

See the soluঞon

object One {

val a = 1

object Two {

val a = 3

val b = 2

}

46 CHAPTER 4. WRITING LARGER PROGRAMS

object Answer {

val answer = a + Two.b

}

}

See the soluঞon

object One {

val a = 5

val b = 2

object Answer {

val a = 1

val answer = a + b

}

}

See the soluঞon

object One {

val a = 1

val b = a + 1

val answer = a + b

}

See the soluঞon

object One {

val a = 1

object Two {

val b = 2

}

val answer = a + b

}

See the soluঞon

object One {

val a = b - 1

val b = a + 1

val answer = a + b

}

See the soluঞon

4.4 Abstracঞon

We’ve learned a lot about names in the previous secঞon. If we want to use fancy programmer words, we could
say that names abstract over expressions. This usefully captures the essence of what defining names does, so
let’s decode the programmer-talk.

4.4. ABSTRACTION 47

Figure 4.1: Five boxes filled with Royal Blue

To abstract means to remove unnecessary details. For example, numbers are an abstracঞon. The number “one”
is never found in nature as a pure concept. It’s always one object, such as one apple, or one copy of Creaঞve
Scala. When doing arithmeঞc the concept of numbers allows us to abstract away the unnecessary detail of the
exact objects we’re counঞng and manipulate the numbers on their own.

Similarly a name stands in for an expression. An expression tells us how to construct a value. If that value has
a name then we don’t need to know anything about how the value is constructed. The expression can have
arbitrary complexity, but we don’t have to care about this complexity if we just use the name. This is what it
means when we say that names abstract over expressions. Whenever we have an expression we can subsঞtute
a name that refers to the same value.

Abstracঞon makes code easier to read and write. Let’s take as an example creaঞng a sequence of boxes like
shown in fig. 4.1.

We can write out a single expression that creates the picture.

Image.rectangle(40, 40)

.strokeWidth(5.0)

.strokeColor(Color.royalBlue.spin(30.degrees))

.fillColor(Color.royalBlue)

.beside(

Image.rectangle(40, 40)

.strokeWidth(5.0)

.strokeColor(Color.royalBlue.spin(30.degrees))

.fillColor(Color.royalBlue)

).beside(

Image.rectangle(40, 40)

.strokeWidth(5.0)

.strokeColor(Color.royalBlue.spin(30.degrees))

.fillColor(Color.royalBlue)

).beside(

Image.rectangle(40, 40)

.strokeWidth(5.0)

.strokeColor(Color.royalBlue.spin(30.degrees))

.fillColor(Color.royalBlue)

).beside(

Image.rectangle(40, 40)

.strokeWidth(5.0)

.strokeColor(Color.royalBlue.spin(30.degrees))

.fillColor(Color.royalBlue)

)

In this code it is difficult to see the simple pa�ern within. Can you really tell at a glance that all the rectangles
are exactly the same? If we make the abstracঞon of naming the basic box the code becomes much easier to
read.

48 CHAPTER 4. WRITING LARGER PROGRAMS

Figure 4.2: The Archery Target

val box =

Image.rectangle(40, 40)

.strokeWidth(5.0)

.strokeColor(Color.royalBlue.spin(30.degrees))

.fillColor(Color.royalBlue)

box.beside(box).beside(box).beside(box).beside(box)

Now we can easily see how the box is made, and easily see that the final picture is that box repeated five ঞmes.

Exercises

Archery Again

Let’s return to the archery target we created in an earlier chapter, shown in fig. 4.2.

Last ঞme we created the image we didn’t know how to name values, so we can to write one large expression.
This ঞme around, give the components of the image names so that it is easier for someone else to understand
how the image is constructed. You’ll have to use your own taste to decide what parts should be named and
what parts don’t warrant names of their own.

See the soluঞon

4.5. PACKAGES AND IMPORTS 49

Figure 4.3: A Street Scene

Streets Ahead

For a more compelling use of names, create a street scene like that shown in fig. 4.3. By naming the individual
components of the image you should be able to avoid a great deal of repeঞঞon.

See the soluঞon

4.5 Packages and Imports

When we changed our code to compile we had to add many import statements to it. In this secঞon we learn
about them.

We’ve seen that one name can shadow another. This can cause problems in larger programs as many parts of
a program many want to put a common name to different uses. We can create scopes to hide names from the
outside, but we must sঞll deal with names defined at the top-level.

We have the same problem in natural language. For example, if both your brother and friend were called “Ziggy”
youwould have to qualify which one youmeant when you used their name. Perhaps you could tell from context,
or perhaps your friend was “Ziggy S” and your brother was just “Ziggy”.

In Scala we can use packages to organise names. A package creates a scope for names defined at the top-level.
All top-level names within the same package are defined in the same scope. To bring names in a package into
another scope we must import them.

Creaঞng a package is simple: we write

package <name>

at the top of the file, replace <name> with the name of our package.

When we want to use names defined in a package we use an import statement, specifying the package name
followed by _ for all names, or the just the name we want if we only want one or a few names.

Here’s an example.

You can’t define packages in the console. To get the following code to work you must put the code within the
package example into a file and compile it.

Let’s start by defining some names within a package.

package example

object One {

val one = 1

}

object Two {

50 CHAPTER 4. WRITING LARGER PROGRAMS

val two = 2

}

object Three {

val three = 3

}

Now to bring these names into scope we must import them. We could import just one name.

import example.One

One.one

Or both One and Two.

import example.{One, Two}

One.one + Two.two

Or all the names in example.

import example._

One.one + Two.two + Three.three

In Scala we can also import just about anything that defines a scope, including objects. So the following code
brings one into scope.

import example.One._

one

4.5.1 Package Organisaঞon

Packages stop top-level names from colliding, but what about collisions between package names? It’s common
to organise packages in a hierarchy, which helps to avoid collisions. For example, in Doodle the package core
is defined within the package doodle. When we use the statement

import doodle.core._

we’re indicaঞng we want the package corewithin the package doodle, and not some other package that might
be called core.

Chapter 5

The Subsঞtuঞon Model of Evaluaঞon

We need to build a mental model of how Scala expressions are evaluated so we can understand what our
programs are doing. We’ve been geমng by with an informal model so far. In this secঞon we make our model a
bit more formal by learning about the subsࢼtuࢼon model of evaluaঞon. Like many things in programming we’re
using some fancy words for a simple concept. In this case you’ve probably already learned about subsঞtuঞon
in high school algebra, and we’re just taking those ideas into a new context.

If you run the examples from the SBT console within Doodle they will just work. If not, you will need to
start your code with the following imports to make Doodle available.

import doodle.core._

import doodle.image._

import doodle.image.syntax._

import doodle.image.syntax.core._

import doodle.java2d._

5.1 Subsঞtuঞon

Subsঞtuঞon says that wherever we see an expression we can replace it with the value it evaluates to. For
example, where we see

1 + 1

we can replace it with 2. This in turn means when we see a compound expression such as

(1 + 1) + (1 + 1)

we can subsঞtute 2 for 1 + 1 giving

2 + 2

which evaluates to 4.

This type of reasoning is what we do in high school algebra whenwe simplify an expression. Naturally computer
science has fancy words for this process. In addiঞon to subsঞtuঞon, we can call this reducing an expression, or
equaࢼonal reasoning.

Subsঞtuঞon gives us a way to reason about our programs, which is another way of saying “working out what
they do”. We can apply subsঞtuঞon to just about any expression we’ve seen so far. It’s easier to use examples
that work with numbers and strings, rather than images, here so we’ll return to an example we saw in an earlier
chapter:

51

52 CHAPTER 5. THE SUBSTITUTION MODEL OF EVALUATION

1 + ("Moonage daydream".indexOf("N"))

In the previous example we were a bit fast-and-loose. Here we will be a bit more precise to illustrate the steps
the computer would have to go through. We are trying to emulate the computer, a[er all.

The expression containing the + consists of two sub-expressions, 1 and ("Moonage daydream".indexOf("N")).
We have to decide which to evaluate first: the le[or the right. Let’s arbitrarily choose the right sub-expression
(we’ll return to this choice later.)

The sub-expression ("Moonage daydream".indexOf("N")) again consists of two sub-expressions, "Moon-
age daydream" and "N". Let’s again evaluate the right-hand first, remembering that literal expressions are not
values so they must be evaluated.

The literal "N" evaluates to the value "N". To avoid this confusion let’s write the value as |"N"|. Now we can
subsঞtute the value for the expression given in our first steps

1 + ("Moonage daydream".indexOf(|"N"|))

Now we can evaluate the le[-hand side of the sub-expression, subsঞtuঞng the literal expression "Moonage

daydream" with its value |"Moonage daydream"|. This gives us

1 + (|"Moonage daydream"|.indexOf(|"N"|))

Now we’re in a posiঞon to evaluate the enঞre expression (|"Moonage daydream"|.indexOf(|"N"|)),
which evaluates to |-1| (again differenঞaঞng the integer value from the literal expression by using a verঞcal
bar). Once again we perform subsঞtuঞon and now we have

1 + |-1|

Now we should evaluate the le[-hand side literal 1, giving |1|. Perform subsঞtuঞon and we get

|1| + |-1|

Now we can evaluate the enঞre expression, giving

|0|

We can ask Scala to evaluate the whole expression to check our work.

1 + ("Moonage daydream".indexOf("N"))

// res4: Int = 0

Correct!

There are some observaঞons we might make at this point:

• doing subsঞtuঞon rigorously like a computer might involve a lot of steps;
• the shortcut evaluaঞon you probably did in your head probably got to the correct answer; and
• our seemingly arbitrary choice to do evaluaঞon from right-to-le[got us the correct answer.

Did we somehow manage to choose the same subsঞtuঞon order that Scala uses (no we didn’t, but we haven’t
invesঞgated this yet) or does it not really ma�er what order we choose? When exactly can we take shortcuts
and sঞll reach the right result, like we did in the first example with addiঞon? Wewill invesঞgate these quesঞons
in just a moment, but first let’s talk about how subsঞtuঞon works with names.

5.1. SUBSTITUTION 53

5.1.1 Names

The subsঞtuঞon rule for names is to subsঞtute the name with the value it refers to. We’ve already been using
this rule implicitly. Now we’re just formalising it.

For example, given the code

val name = "Ada"

name ++ " " ++ "Lovelace"

we can apply subsঞtuঞon to get

"Ada" ++ " " ++ "Lovelace"

which evaluates to

"Ada Lovelace"

We can use names to be a bit more formal with our subsঞtuঞon process. Returning to our first example

1 + 1

we can give this expression a name:

val two = 1 + 1

When we see a compound expression such as

(1 + 1) + (1 + 1)

subsঞtuঞon tells us we can subsঞtute two for 1 + 1 giving

two + two

Remember when we worked through the expression

1 + ("Moonage daydream".indexOf("N"))

we broke it into sub-expressions which we then evaluated and subsঞtuted. Using words, this was quite convo-
luted. With a few val declaraঞons we can make this both more compact and easier to see. Here’s the same
expression broken into it’s components.

val a = 1

val b = "Moonage daydream"

val c = "N"

val d = b.indexOf(c)

val e = a + d

If we (at this point, arbitrarily) define that evaluaঞon occurs from top-to-bo�om we can experiment with dif-
ferent ordering to see what difference they make.

For example,

54 CHAPTER 5. THE SUBSTITUTION MODEL OF EVALUATION

val c = "N"

val b = "Moonage daydream"

val a = 1

val d = b.indexOf(c)

val e = a + d

achieves the same result as before. However we can’t use

val e = a + d

val a = 1

val b = "Moonage daydream"

val c = "N"

val d = b.indexOf(c)

because e depends on a and d, and in our top-to-bo�om ordering a and d have yet to be evaluated. We might
rightly claim that this is a bit silly to even a�empt. The complete expression we’re trying to evaluate is e but
a to d are sub-expressions of e, so of course we have to evaluate the sub-expressions before we evaluate the
expression.

5.2 Order of Evaluaঞon

We’re now ready to tackle the quesঞon of order-of-evaluaঞon. We might wonder if the order of evaluaঞon
even ma�ers? In the examples we’ve looked at so far the order doesn’t seem to ma�er, except for the issue
that we cannot evaluate an expression before it’s sub-expressions.

To invesঞgate these issues further we need to introduce a new concept. So far we have almost always dealt
with pure expressions. These are expressions that we can freely subsঞtute in any order without issue¹.

Impure expressions are those where the order of evaluaঞon ma�ers. We have already used one impure expres-
sion, the method draw. If we evaluate

Image.circle(100).draw

Image.rectangle(100, 50).draw

and

Image.rectangle(100, 50).draw

Image.circle(100).draw

the windows containing the images will appear in different orders. Hardly an exciঞng difference, but it is a
difference, which is the point.

The key disঞnguishing feature of impure expressions is that their evaluaঞon causes some change that we can
see. For example, evaluaঞng draw causes an image to be displayed. We call these observable changes side
effects, or just effects for short. In a program containing side effects we cannot freely use subsঞtuঞon. However
we can use side effects to invesঞgate the order of evaluaঞon. Our tool for doing so will be the printlnmethod.

The println method displays text on the console (a side effect) and evaluates to unit. Here’s an example:

¹This is not enঞrely true. There are some corner cases where the order of evaluaঞon does make a difference even with pure
expressions. We’re not going to worry about these cases here. If you’re interested in learning more, and this is interesঞng and useful
stuff, you can read up on “eager evaluaঞon” and “lazy evaluaঞon”.

5.2. ORDER OF EVALUATION 55

println("Hello!")

// Hello!

The side-effect of println—prinঞng to the console—gives us a convenient way to invesঞgate the order of
evaluaঞon. For example, the result of running

println("A")

// A

println("B")

// B

println("C")

// C

indicates to us that expressions are evaluated from top to bo�om. Let’s use println to invesঞgate further.

Exercises

No Subsঞtute for Println

In a pure programwe can give a name to any expression and subsঞtute any other occurrences of that expression
with the name. Concretely, we can rewrite

(2 + 2) + (2 + 2)

to

val a = (2 + 2)

a + a

and the result of the program doesn’t change.

Using println as an example of an impure expression, demonstrates that this is not the case for impure ex-
pressions, and hence we can say that impure expressions, or side effects, break subsঞtuঞon.

See the soluঞon

Madness to our Methods

When we introduced scopes we also introduced block expressions, though we didn’t call them that at the ঞme.
A block is created by curly braces ({}). It evaluates all the expressions inside the braces. The final result is the
result of the last expression in the block.

// Evaluates to three

{

val one = 1

val two = 2

one + two

}

// res12: Int = 3

We can use block expressions to invesঞgate the order in which method parameters are evaluated, by puমng
println expression inside a block that evaluates to some other useful value.

For example, using Image.rectangle or Color.hsl and block expressions, we can determine if Scala evalu-
ates method parameters in a fixed order, and if so what that order is.

Note that you can write a block compactly, on one line, by separaঞng expressions with semicolons (;). This is
generally not good style but might be useful for these experiments. Here’s an example.

56 CHAPTER 5. THE SUBSTITUTION MODEL OF EVALUATION

// Evaluates to three

{ val one = 1; val two = 2; one + two }

// res13: Int = 3

See the soluঞon

The Last Order

In what order are Scala expressions evaluated? Perform whatever experiments you need to determine an an-
swer to this quesঞon to your own saঞsfacঞon. You can reasonably assume that Scala uses consistent rules
across all expressions. There aren’t special cases for different expressions.

See the soluঞon

5.3 Local Reasoning

We’ve seen that the order of evaluaঞon is only really important when we have side effects. For example, if the
following expressions produce side effects

disableWarheads()

launchTheMissles()

we really want to ensure that the expressions are evaluated top to bo�om so the warheads are disabled before
the missles are launched.

All useful programs must have some effect, because effects are how the program interacts with the outside
world. The effect might just be prinঞng out something when the program has finished, but it’s sঞll there. Min-
imising side effects is a key goal of funcঞonal programming so we will spend a few more words on this topic.

Subsঞtuঞon is really easy to understand. When the order of evaluaঞon doesn’t ma�er it means any other code
cannot change the meaning of the code we’re looking at. 1 + 1 is always 2, no ma�er what other code we
have in our program, but the effect of launchTheMissles() depends on whether we have already disabled
the warheads or not.

The upshot of this is that pure code can be understood in isolaঞon. Since no other code can change its meaning,
if we’re only interested in one fragment we can ignore the rest of the code. The meaning of impure code, on
the other hand, depends on all the code that will have run before it is evaluated. This property is known as local
reasoning. Pure code has it, but impure code does not.

As programs get larger it becomes harder and harder to keep all the details in our head. Since the size of our
head is a fixed quanঞty the only soluঞon is to introduce abstracঞon. Remember that an abstracঞon is the
removal of irrelevant details. Pure code is the ulঞmate abstracঞon, because it tells us that everything else is
an irrelevant detail. This is one of the properঞes that gets funcঞonal programmers really excited: the ability
to make large programs understandable. Funcঞonal programming doesn’t mean avoiding effects, because all
useful programs have effects. It does, however, mean controlling effects so the majority of the code can be
reasoned about using the simple model of subsঞtuঞon.

5.3.1 The Meaning of Meaning

So far, we’ve talked a lot about the meaning of code, where we’ve taken “meaning” to mean to the result it
evaluates to, and perhaps the side effects it performs.

5.3. LOCAL REASONING 57

In subsঞtuঞon, the meaning of a program is exactly what it evaluates to. Thus two programs are equal if they
evaluate to the same result. This is precisely why side effects break subsঞtuঞon: the subsঞtuঞon model has
no noঞon of side effects and therefore cannot disঞnguish two programs that differ by their effects.

There are other ways in which programs can differ. For example, one program may take longer than another to
produce the same result. Again, subsঞtuঞon does not disঞnguish them.

Subsঞtuঞon is an abstracঞon, and the details it throws away are everything except for the value. Side effects,
ঞme, and memory usage are all irrelevant to subsঞtuঞon, but perhaps not to the people wriঞng or running the
program. There is a tradeoff here. We can employ richer models that capture more of these details, but they
are much harder to work with. For most people most of the ঞme subsঞtuঞon makes the right tradeoff of being
dead simple to use while sঞll being useful.

58 CHAPTER 5. THE SUBSTITUTION MODEL OF EVALUATION

Chapter 6

Methods

We’ve already used methods—methods are the way we interact with objects. In this chapter we’ll learn how to
write our own methods.

Names allow us to abstract over expressions. Methods allow us to abstract over and generalise expressions.
By generalisaঞon we mean the ability to express a group of related things, in this case expressions. A method
captures a template for an expression, and allows the caller to fill in parts of that template by passing themethod
parameters.

If you run the examples from the SBT console within Doodle they will just work. If not, you will need to
start your code with the following imports to make Doodle available.

import doodle.core._

import doodle.image._

import doodle.image.syntax._

import doodle.image.syntax.core._

import doodle.java2d._

6.1 Methods

In a previous chapter we created the image shown in fig. 6.1 using the program

val box =

Image.rectangle(40, 40).

strokeWidth(5.0).

strokeColor(Color.royalBlue.spin(30.degrees)).

fillColor(Color.royalBlue)

Figure 6.1: Five boxes filled with Royal Blue

59

60 CHAPTER 6. METHODS

box beside box beside box beside box beside box

Imagine we wanted to change the color of the boxes. Right now we would have to write out the expression
again for each different choice of color.

val paleGoldenrod = {

val box =

Image.rectangle(40, 40).

strokeWidth(5.0).

strokeColor(Color.paleGoldenrod.spin(30.degrees)).

fillColor(Color.paleGoldenrod)

box beside box beside box beside box beside box

}

val lightSteelBlue = {

val box =

Image.rectangle(40, 40).

strokeWidth(5.0).

strokeColor(Color.lightSteelBlue.spin(30.degrees)).

fillColor(Color.lightSteelBlue)

box beside box beside box beside box beside box

}

val mistyRose = {

val box =

Image.rectangle(40, 40).

strokeWidth(5.0).

strokeColor(Color.mistyRose.spin(30.degrees)).

fillColor(Color.mistyRose)

box beside box beside box beside box beside box

}

This is tedious. Each expression only differs in a minor way. It would be nice if we could capture the general
pa�ern and allow the color to vary. We can do exactly this by declaring a method.

def boxes(color: Color): Image = {

val box =

Image.rectangle(40, 40).

strokeWidth(5.0).

strokeColor(color.spin(30.degrees)).

fillColor(color)

box beside box beside box beside box beside box

}

// Create boxes with different colors

boxes(Color.paleGoldenrod)

boxes(Color.lightSteelBlue)

boxes(Color.mistyRose)

Try this yourself to see that you get the same result using the method as you did wriঞng everything out by hand.

Now that we’ve seen an example of declaring a method, we need to explain the syntax of methods. Next, we’ll
look at how to write methods, the semanঞcs of method calls, and how they work in terms of subsঞtuঞon.

6.2. METHOD SYNTAX 61

6.2 Method Syntax

We’ve already seen an example of declaring a method.

def boxes(color: Color): Image = {

val box =

Image.rectangle(40, 40).

strokeWidth(5.0).

strokeColor(color.spin(30.degrees)).

fillColor(color)

box beside box beside box beside box beside box

}

Let’s use this as a model for understanding the syntax of declaring a method. The first part is the keyword def.
A keyword is a special word that indicates something important to the Scala compiler—in this case that we’re
going to declare a method. We’re already seen the object and val keywords.

The def is immediately followed by the name of the method, in this case boxes, in the same way that val and
object are immediately followed by the name they declare. Like a val declaraঞon, a method declaraঞon is not
a top-level declaraঞon and must be wrapped in an object declaraঞon (or other top-level declaraঞon) when
wri�en in a file.

Next we have the method parameters, defined in brackets (()). The method parameters are the parts that the
caller can “plug-in” to the expression that the method evaluates. When declaring method parameters we must
give them both a name and a type. A colon (:) separates the name and the type. We haven’t had to declare
types before. Most of the ঞme Scala will work out the types for us, a process known as type inference. Type
inference, however, cannot infer the type of method parameters so we must provide them.

A[er the method parameters comes the result type. The result type is the type of the value the method evalu-
ates to when it is called. Unlike parameter types Scala can infer the result type, but it is good pracঞce to include
it and we will do so throughout Creaঞve Scala.

Finally, the body expression of the method calculates the result of calling the method. A body can be a block
expression, as in boxes above, or just a single expression.

Method Declaraঞon Syntax

The syntax for a method declaraঞon is

def methodName(param1: Param1Type, ...): ResultType =

bodyExpression

where

• methodName is the name of the method;
• the opঞonal param1 : Param1Type, ... are one or more pairs of parameter name and parame-

ter type;
• the opঞonal ResultType is the type of the result of calling the method; and
• bodyExpression is the expression that is evaluated to yield the result of calling the method.

62 CHAPTER 6. METHODS

Exercises

Let’s pracঞce declaring methods by wriঞng some simple examples.

Square

Write a method square that accepts an Int argument and returns the Int square of it’s argument. (Squaring
a number is mulঞplying it by itself.)

See the soluঞon

Halve

Write a method halve that accepts a Double argument and returns the Double that is half of it’s argument.

See the soluঞon

6.3 Method Semanঞcs

Now that we know how to declare methods, let’s turn to the semanঞcs. How do we understand a method call
in terms of our subsঞtuঞon model?

We already know we can subsঞtute a method call with the value it evaluates to. However we need a more fine-
grained model so we can work out what this value will be. Our extended model is as follows: when we see a
method call we will create a new block and within this block: bind the parameters to the respecঞve expressions
given in the method call and subsঞtute the method body.

We can then apply subsঞtuঞon as usual.

Let’s see a simple example. Given the method

def square(x: Int): Int =

x * x

we can expand the method call

square(2)

by introducing a block

{

square(2)

}

binding the parameter x to the expression 2

{

val x = 2

square(2)

}

and subsঞtuঞng the method body

6.4. CONCLUSIONS 63

{

val x = 2

x * x

}

We can now perform subsঞtuঞon as usual giving

{

2 * 2

}

and finally

{

4

}

Once again we see that subsঞtuঞon is involved but no single step was parঞcularly difficult.

Exercise

Last ঞme we looked at subsঞtuঞon we spent a lot of ঞme invesঞgaঞng order of evaluaঞon. In the descripঞon
above we have decided that a method’s arguments are evaluated before the body is evaluated. This is not the
only possibility. We could, for example, evaluate the method’s arguments only at the point they are needed.
This could save us some ঞme if a method doesn’t use one of its parameters. By using our old friend println,
determine when method parameters are evaluated in Scala.

See the soluঞon

6.4 Conclusions

In this chapter, we learned how to write our own simple methods and we saw how to use the subsঞtuঞon
model of evaluaঞon to understand method calls.

We saw that methods both abstract over expressions, in the same way as names, and also generalize over
expressions, allowing us to represent a group of related expressions with one name.

We wrote some interesঞng methods, but we sঞll have more repeated code than is desirable (think about the
repeated calls to box and circle in the exercises.) In the next chapter, we will learn how we can generalize
over this using structural recursion over the natural numbers.

64 CHAPTER 6. METHODS

Chapter 7

Structural Recursion

In this chapter we see our first major pa�ern for structuring computaঞons: structural recursion over the natural
numbers. That’s quite a mouthful, so let’s break it down:

• By a pa�ern, we mean a way of wriঞng code that is useful in lots of different contexts. We’ll encounter
structural recursion in many different situaঞons throughout this book.

• By the natural numbers we mean the whole numbers 0, 1, 2, and upwards.

• By recursion wemean something that refers to itself. Structural recursion means a recursion that follows
the structure of the data it is processing. If the data is recursive (refers to itself) then the structural
recursion will also refer to itself. We’ll see in more detail what this means in a moment.

If you run the examples from the SBT console within Doodle they will just work. If not, you will need to
start your code with the following imports to make Doodle available.

import doodle.core._

import doodle.image._

import doodle.image.syntax._

import doodle.image.syntax.core._

import doodle.java2d._

7.1 A Line of Boxes

Let’s start with an example, drawing a line or row of boxes as in fig. 7.1.

Let’s define a box to begin with.

val aBox = Image.square(20).fillColor(Color.royalBlue)

Then one box in a row is just

Figure 7.1: Five boxes filled with Royal Blue

65

66 CHAPTER 7. STRUCTURAL RECURSION

val oneBox = aBox

If we want to have two boxes side by side, that is easy enough.

val twoBoxes = aBox.beside(oneBox)

Similarly for three.

val threeBoxes = aBox.beside(twoBoxes)

And so on for as many boxes as we care to create.

You might think this is an unusual way to create these images. Why not just write something like this, for
example?

val threeBoxes = aBox.beside(aBox).beside(aBox)

These two definiঞons are equivalent. We’ve chosen to write later images in terms of earlier ones to emphasise
the structure we’re dealing with, which is building up to structural recursion.

Wriঞng images in this way could get very tedious. What we’d really like is some way to tell the computer the
number of boxes we’d like. More technically, we would like to abstract over the expressions above. We learned
in the previous chapter that methods abstract over expressions, so let’s try to write a method to solve this
problem.

We’ll start by wriঞng a method skeleton that defines, as usual, what goes into the method and what it evaluates
to. In this case we supply an Int count, which is the number of boxes we want, and we get back an Image.

def boxes(count: Int): Image =

???

Now comes the new part, the structural recursion. We noঞced that threeBoxes above is defined in terms of
twoBoxes, and twoBoxes is itself defined in terms of box. We could even define box in terms of no boxes, like
so:

val oneBox = aBox.beside(Image.empty)

Here we used Image.empty to represent no boxes.

Imagine we had already implemented the boxesmethod. We can say the following properঞes of boxes always
hold, if it is correctly implemented:

• boxes(0) == Image.empty

• boxes(1) == aBox.beside(boxes(0))

• boxes(2) == aBox.beside(boxes(1))

• boxes(3) == aBox.beside(boxes(2))

The last three properঞes all have the same general shape. We can describe all of them, and any case for n > 0,
with the single property boxes(n) == aBox.beside(boxes(n - 1)). So we’re le[with two properঞes

• boxes(0) == Image.empty

• boxes(n) == aBox.beside(boxes(n-1))

These two properঞes completely define the behavior of boxes. In fact we can implement boxes by converঞng
these properঞes into code.

A full implementaঞon of boxes is

7.2. MATCH EXPRESSIONS 67

Figure 7.2: Three stacked boxes filled with Royal Blue

def boxes(count: Int): Image =

count match {

case 0 => Image.empty

case n => aBox.beside(boxes(n-1))

}

Try it and see what results you get! This implementaঞon is only ঞny bit more verbose than the properঞes we
wrote above, and is our first structural recursion over the natural numbers.

At this pointwe have two quesঞons to answer. Firstly, howdoes this match expressionwork? More importantly,
is there some general principle we can use to create methods like this on our own? Let’s take each quesঞon in
turn.

Exercise: Stacking Boxes

Even before we get into the details of match expressions you should be able to modify boxes to produce an
image like fig. 7.2.

At this point we’re trying to get used to the syntax of match, so rather than copying and pasঞng boxes write it
all out by hand again to get some pracঞce.

See the soluঞon

7.2 Match Expressions

In the previous secঞon we saw the match expression

count match {

case 0 => Image.empty

case n => aBox.beside(boxes(n-1))

}

How are we to understand this new kind of expression, and write our own? Let’s break it down.

The very first thing to say is that match is indeed an expression, which means it evaluates to a value. If it didn’t,
the boxes method would not work!

To understand what it evaluates to we need more detail. A match expression in general has the shape

<anExpression> match {

case <pattern1> => <expression1>

case <pattern2> => <expression2>

case <pattern3> => <expression3>

...

}

68 CHAPTER 7. STRUCTURAL RECURSION

<anExpression>, concretely count in the case above, is the expression that evaluates to the value we’re
matching against. The pa�erns <pattern1> and so on are matched against this value. So far we’ve seen two
kinds of pa�erns:

• a literal (as in case 0) which matches exactly the value that literal evaluates to; and
• a wildcard (as in case n) which matches anything, and introduces a binding within the right-hand side

expression.

Finally, the right-hand side expressions, <expression1> and so on, are just expressions like any other we’ve
wri�en so far. The enঞre match expression evaluates to the value of the right-hand side expression of the
first pa�ern that matches. So when we call boxes(0) both pa�erns will match (because the wildcard matches
anything), but because the literal pa�ern comes first the expression Image.empty is the one that is evaluated.

A match expression that checks for all possible cases is called an exhausঞve match. If we can assume that
count is always greater or equal to zero, the match in boxes is exhausঞve.

Once we’re comfortable with match expressions we need to look at the structure of the natural numbers before
we can explain structural recursion over them.

Exercises

Guess the Result

Let’s check our understanding of match by guessing what each of the following expressions evaluates to, and
why.

"abcd" match {

case "bcde" => 0

case "cdef" => 1

case "abcd" => 2

}

1 match {

case 0 => "zero"

case 1 => "one"

case 1 => "two"

}

1 match {

case n => n + 1

case 1 => 1000

}

1 match {

case a => a

case b => b + 1

case c => c * 2

}

See the soluঞon

7.3. THE NATURAL NUMBERS 69

NoMatch

What happens if no pa�ern matches in a match expression? Take a guess, then write a match expression
that fails to match and see if you managed to guess correctly. (At this point we have no reason to expect any
parঞcular behavior so any reasonable guess will do.)

See the soluঞon

7.3 The Natural Numbers

The natural numbers are the whole numbers, or integers, greater than or equal to zero. In other words the
numbers 0, 1, 2, 3, … (Some people define the natural numbers as starঞng at 1, not 0. It doesn’t greatly ma�er
for our purposes which definiঞon you choose, but here we’ll assume they start at 0.)

One interesঞng property of the natural numbers is that we can define them recursively. That is, we can define
them in terms of themselves. This kind of circular definiঞon seems like it would lead to nonsense. We avoid
this by including in the definiঞon a base case that ends the recursion. Concretely, the definiঞon is:

A natural number n is

• 0; or
• 1 + m, where m is a natural number.

The case for 0 is the base case, whilst the other case is recursive as it defines a natural number n in terms of a
natural number m. Because m is always smaller than n, and the base case is the smallest possible natural number,
this definiঞon defines all of the natural numbers.

Given a natural number, say, 3, we can break it down using the definiঞon above as follows:

3 = 1 + 2 = 1 + (1 + 1) = 1 + (1 + (1 + 0))

We use the recursive rule to expand the equaঞon unঞl we cannot use it any more. We then use the base case
to stop the recursion.

7.4 Structural Recursion

Now onto structural recursion. The structural recursion pa�ern for the natural numbers gives us two things:

• a reusable code skeleton for processing any natural number; and
• the guarantee that we can use this skeleton to implement any computaঞon on natural numbers.

Remember we wrote boxes as

def boxes(count: Int): Image =

count match {

case 0 => Image.empty

case n => aBox.beside(boxes(n-1))

}

When we developed boxeswe just seemed to stumble upon this pa�ern. Here we see that this pa�ern follows
directly from the definiঞon of the natural numbers. Remember the recursive definiঞon of the natural numbers:
a natural number n is

70 CHAPTER 7. STRUCTURAL RECURSION

• 0; or
• 1 + m, where m is a natural number.

The pa�erns in the match expression exactly match this definiঞon. The expression

count match {

case 0 => ???

case n => ???

}

means we’re checking count for two cases, the case when count is 0, and the case when count is any other
natural number n (which is 1 + m).

The right hand side of the match expression says what we do in each case. The case for zero is Image.empty.
The case for n is aBox.beside(boxes(n-1)).

Now for the really important point. Noঞce that the structure of the right-hand side mirrors the structure of the
natural number we match. When we match the base case 0, our result is the base case Image.empty. When
we match the recursive case n the structure of the right hand side matches the structure of the recursive case
in the definiঞon of natural numbers. The definiঞon states that n is 1 + m. On the right-hand side we replace 1
with aBox, we replace + with beside, and we recursively call boxes with m (which is n-1) where the definiঞon
recurses.

def boxes(count: Int): Image =

count match {

case 0 => Image.empty

case n => aBox.beside(boxes(n-1))

}

To reiterate, the le[hand side of the match expression exactly matches the definiঞon of natural numbers. The
right-hand alsomatches the definiঞon butwe replace natural numberswith images. The image that is equivalent
to zero is Image.empty. The image that is equivalent to 1 + m is aBox.beside(boxes(m)).

This general pa�ern holds for anything we care to write that transforms the natural numbers into some other
type. We always have a match expression. We always have the two pa�erns, corresponding to the base and
recursive cases. The right hand side expressions always consist of the base case, and the recursive case which
itself has a result specific subsঞtute for 1 and +, and a recursive call for n-1.

Structural Recursion over Natural Numbers Pa�ern

The general pa�ern for structural recursion over the natural numbers is

def name(count: Int): Result =

count match {

case 0 => resultBase

case n => resultUnit add name(n-1)

}

where Result, resultBase, resultUnit, and add are specific to the problem we’re solving. So to im-
plement a structural recursion over the natural numbers we must

• recognise the method we’re wriঞng has a natural number as it’s input;

7.4. STRUCTURAL RECURSION 71

Figure 7.3: A row constructed by alternaঞng between two different images.

• work out the result type; and
• decide what should be the base, unit, and addiঞon for the result.

We’re now ready to go explore the fun that can be had with this simple but powerful tool.

7.4.1 Proofs and Programs

If you’ve studied maths you have probably come across proof by inducঞon. The general pa�ern of a
proof by inducঞon looks very much like the general pa�ern of a structural recursion over the natural
numbers. This is no coincidence; there is a deep relaঞonship between the two. We can view a structural
recursion over the natural numbers as exactly a proof by inducঞon. Whenwe claim the ability to write any
transformaঞon on the natural numbers in terms of the structural recursion skeleton, this claim is backed
up by the mathemaঞcal foundaঞon we’re implicitly using. We can also prove properঞes of our code by
using the connecঞon between the two: any structural recursion is implicitly defining a proof of some
property.

This general connecঞon between proofs and programs is known as the Curry-Howard Isomorphism.

Exercises

Three (or More) Stacks

We’ve seen how to create a horizontal row of boxes. Now write a method stacks that takes a natural number
as input and creates a verঞcal stack of boxes.

See the soluঞon

Alternaঞng Images

We do more with the counter than simply using it in the recursive call. In this exercise we’ll choose one Image
when the counter is odd and a different Image when the counter is even. This will give us a row of alternaঞng
images as shown in fig. 7.3.

To do this we need to learn about a new method on Int. The modulomethod, wri�en %, returns the remainder
of dividing one Int by another. Here are some examples.

72 CHAPTER 7. STRUCTURAL RECURSION

4 % 2

// res1: Int = 0

3 % 2

// res2: Int = 1

2 % 2

// res3: Int = 0

1 % 2

// res4: Int = 1

We can see that when the first number is even the result is 0; otherwise it is 1. So we need to check is the
result is 0 and act accordingly. There are a few ways to do this. Here’s one example

(4 % 2 == 0) match {

case true => "It's even!"

case false => "It's odd!"

}

// res5: String = "It's even!"

Here we match against the result of the comparison (4 % 2 == 0). The type of this expression is Boolean,
which has two possible values (true and false).

For Booleans there is special syntax that is more compact than match: an if expression. Here’s the same code
rewri�en using if.

if(4 % 2 == 0) "It's even!"

else "It's odd!"

// res6: String = "It's even!"

Use whichever you are more comfortable with!

That’s all the background we need. Now we can write the method we’re interested in. Here’s the skeleton:

def alternatingRow(count: Int): Image =

???

Implement the method. It’s up to you what you choose for the two images used in the output.

See the soluঞon

Geমng Creaঞve

We can use the counter to modify the image in other ways. For example we can make the color, size, or any
othe property of an image depend on the counter. I have made an example in fig. 7.4, but come up with your
own ideas. Implement a method

def funRow(count: Int): Image =

???

that generates such an image.

See the soluঞon

7.4. STRUCTURAL RECURSION 73

Figure 7.4: A row constructed by making size and color depend on the counter.

Figure 7.5: Crosses generated by count from 0 to 3.

Cross

Our final exercise is to create a method cross that will generate cross images. fig. 7.5 shows four cross images,
which correspond to calling the method cross with 0 to 3.

The method skeleton is

def cross(count: Int): Image =

???

People o[en find this exercise harder than the preceding ones, so we’ll make the process very explicit here.

Firstly, what pa�ern will we use to fill in the body of cross? Write out the pa�ern.

See the soluঞon

Now we’ve idenঞfied the pa�ern we’re using, we need to fill in the problem specific parts:

• the base case; and
• the unit and addiঞon operators.

Hint: use fig. 7.5 to idenঞfy the elements above.

See the soluঞon

74 CHAPTER 7. STRUCTURAL RECURSION

Now finish the implementaঞon of cross.

See the soluঞon

7.5 Reasoning about Recursion

We’re now experienced users of structural recursion over the natural numbers. Let’s now return to our subsঞ-
tuঞon model and see if it works with our new tool of recursion.

Recall that subsঞtuঞon says we can subsঞtute the value of an expression wherever we see a value. In the case
of a method call, we can subsঞtute the body of the method with appropriate renaming of the parameters.

Our very first example of recursion was boxes, wri�en like so:

val aBox = Image.square(20).fillColor(Color.royalBlue)

def boxes(count: Int): Image =

count match {

case 0 => Image.empty

case n => aBox.beside(boxes(n-1))

}

Let’s try using subsঞtuঞon on boxes(3) to see what we get.

Our first subsঞtuঞon is

boxes(3)

// Substitute body of `boxes`

3 match {

case 0 => Image.empty

case n => aBox.beside(boxes(n-1))

}

Knowing how to evaluate a match expression and using subsঞtuঞon again gives us

3 match {

case 0 => Image.empty

case n => aBox.beside(boxes(n-1))

}

// Substitute right-hand side expression of `case n`

aBox.beside(boxes(2))

We can subsঞtute again on boxes(2) to obtain

aBox.beside(boxes(2))

// Substitute body of boxes

aBox.beside {

2 match {

case 0 => Image.empty

case n => aBox.beside(boxes(n-1))

}

}

// Substitute right-hand side expression of `case n`

aBox.beside {

aBox.beside(boxes(1))

}

Repeaঞng the process a few more ঞmes we get

7.5. REASONING ABOUT RECURSION 75

aBox.beside {

aBox.beside {

1 match {

case 0 => Image.empty

case n => aBox.beside(boxes(n-1))

}

}

}

// Substitute right-hand side expression of `case n`

aBox.beside {

aBox.beside {

aBox.beside(boxes(0))

}

}

// Substitute body of boxes

aBox.beside {

aBox.beside {

aBox.beside {

0 match {

case 0 => Image.empty

case n => aBox.beside(boxes(n-1))

}

}

}

}

// Substitute right-hand side expression of `case 0`

aBox.beside {

aBox.beside {

aBox.beside {

Image.empty

}

}

}

Our final result, which simplifies to

aBox.beside(aBox).beside(aBox).beside(Image.empty)

is exactly what we expect. Therefore we can say that subsঞtuঞon works to reason about recursion. This is
great! However the subsঞtuঞons are quite complex and difficult to keep track of without wriঞng them down.

7.5.1 Reasoning About Structural Recursion

There is a more pracঞcal way to reason about structural recursion. Structural recursion guarantees the overall
recursion is correct if we get the individual components correct. There are two parts to the structural recursion;
the base case and the recursive case. The base case we can check just by looking at it. The recursive case has
the recursive call (the method calling itself) but we don’t have to consider this. It is given to us by structural
recursion so it will be correct so long as the other parts are correct. We can simply assume the recursive call it
correct and then check that we are doing the right thing with the result of this call.

Let’s apply this to reasoning about boxes.

def boxes(count: Int): Image =

count match {

case 0 => Image.empty

76 CHAPTER 7. STRUCTURAL RECURSION

case n => aBox.beside(boxes(n-1))

}

We can tell the base case is correct by inspecঞon. Looking at the recursive case we assume that boxes(n-1)
will do the right thing. The quesঞon then becomes: is what we do with the result of the recursive call boxes(n-
1), correct? The answer is yes: if the recursion boxes(n-1) creates n-1 boxes in a line, sঞcking a box in front
of them is the right thing to do. Since the individual cases are correct the whole thing is guaranted correct by
structural recursion.

This way of reasoning is much more compact than using subsঞtuঞon and guaranteed to work if we’re using
structural recursion.

Exercises

Below are some rather silly examples of structural recursion. Work out if the methods do what they claim to
do without running them.

// Given a natural number, returns that number

// Examples:

// identity(0) == 0

// identity(3) == 3

def identity(n: Int): Int =

n match {

case 0 => 0

case n => 1 + identity(n-1)

}

See the soluঞon

// Given a natural number, double that number

// Examples:

// double(0) == 0

// double(3) == 6

def double(n: Int): Int =

n match {

case 0 => 0

case n => 2 * double(n-1)

}

See the soluঞon

7.6 Conclusions

In this chapter we’ve seen our first big pa�ern for structuring code, structural recursion over the natural numbers.
There are a few key points.

First is the structural recursion pa�ern itself. We saw we can use this to write methods that produce a value
with a varying size, and the pa�ern is the same everyࢼme. We’ve seen a lot of examples that generate images, but
we can use this pa�ern for anything that is transforming a natural number into anything else (including other
natural numbers). We’ll use this pa�ern, and other variants of structural recursion, throughout the book.

The second big idea is how we reason about structural recursion. We can use subsঞtuঞon but it is easier to
take a shortcut. For structural recursion we are guaranteed to get the correct result if we get the base case

7.6. CONCLUSIONS 77

and the recursive case correct. In parঞcular we don’t need to reason through the recursive call; we assume it
returns the correct result and only check that we correctly implement the next step adding to the result.

The third key point is that we can use the value of the counter to do other things beyond the recursion. We
looked at using it to adjust the images we created at each step, which gives us new creaঞve possibiliঞes.

In the next secঞon we’ll look at creaঞng more complex images using structural recursion, and see a few new
techniques we can use with it.

78 CHAPTER 7. STRUCTURAL RECURSION

Chapter 8

Fractals

A fractal is an image that is self-similar, meaning that it contains copies of itself. Fractals are an intriguing type of
image as they build complex output from simple rules. In this chapterwewill build some simple fractals, getmore
experience with structural recursion over natural numbers, and finally learn more programming techniques.

If you run the examples from the SBT console within Doodle they will just work. If not, you will need to
start your code with the following imports to make Doodle available.

import doodle.core._

import doodle.image._

import doodle.image.syntax._

import doodle.image.syntax.core._

import doodle.java2d._

8.1 The Chessboard

In this exercise and the next we’re trying to sharpen your eye for recursive structure.

Our first image is the chessboard. Though arguably not a fractal, the chessboard does contain itself: a 4x4
chessboard can be constructed from 4 2x2 chessboards, an 8x8 from 4 4x4s, and so on. The picture in fig. 8.1
shows this.

Your mission in this exercise is to idenঞfy the recursive structure in a chessboard, and implement a method to
draw chessboards. The method skeleton is

def chessboard(count: Int): Image =

???

Implement chessboard. Remember we can use the structural recursion skeleton and reasoning technique to
guide our implementaঞon.

See the soluঞon

If you have prior programming experience you might have immediately thought of creaঞng a chessboard via
two nested loops. Here we’re taking a different approach by defining a larger chessboard as a composiঞon
of smaller chessboards. Grasping this different approach to decomposing problems is a key step in becoming
proficient in funcঞonal programming.

79

80 CHAPTER 8. FRACTALS

Figure 8.1: Chessboards generated by count from 0 to 2.

8.2 Sierpinkski Triangle

The Sierpinski triangle, show in fig. ??, is a famous fractal. (Technically, fig. ?? shows a Sierpinkski triangle.)

Although it looks complicated we can break the structure down into a form that we can generate with structural
recursion over the natural numbers. Implement a method with skeleton

def sierpinski(count: Int): Image =

???

No hints this ঞme. We’ve already seen everything we need to know.

See the soluঞon

8.3 Auxiliary Parameters

We’ve seen how to use structural recursion over the natural numbers to write a number of interesঞng programs.
In this secঞon we’re going to learn how auxillary parameters allow us to write more complex programs. An
auxiliary parameter is just an addiঞonal parameter to our method that allows us to pass extra informaঞon down
the recursive call.

For example, imagine creaঞng the picture in fig. 8.3, which shows a line of boxes that grow in size as we move
along the line.

How can we create this image?

We know it has to be a structural recursion over the natural numbers, so we can immediately write down the
skeleton

def growingBoxes(count: Int): Image =

count match {

case 0 => base

8.3. AUXILIARY PARAMETERS 81

Figure 8.2: The Sierpinski triangle.

Figure 8.3: Boxes that grow in size with each recursion.

82 CHAPTER 8. FRACTALS

case n => unit add growingBoxes(n-1)

}

Using what we learned working with boxes earlier we can go a bit further and write down

def growingBoxes(count: Int): Image =

count match {

case 0 => Image.empty

case n => Image.square(???).beside(growingBoxes(n-1))

}

The challenge becomes how to make the box grow in size as we move to the right.

There are two ways to do this. The tricky way is to switch the order in the recursive case and make the size of
the box a funcঞon of n. Here’s the code.

def growingBoxes(count: Int): Image =

count match {

case 0 => Image.empty

case n => growingBoxes(n-1).beside(Image.square(n*10))

}

Spend some ঞme figuring out why this works before moving on to the soluঞon using an auxiliary parameter.

Alternaঞvely we can simply add another parameter to growingBoxes that tells us how big the current box
should be. When we recurse we change this size. Here’s the code.

def growingBoxes(count: Int, size: Int): Image =

count match {

case 0 => Image.empty

case n =>

Image

.square(size)

.beside(growingBoxes(n-1, size + 10))

}

The auxiliary parameter method has two advantages: we only have to think about what changes from one
recursion to the next (in this case, the box gets larger), and it allows the caller to change this parameter (for
example, making the starঞng box larger or smaller).

Now we’ve seen the auxiliary parameter method let’s pracঞce using it.

Gradient Boxes

In this exercise we’re going to draw a picture like that in fig. 8.4. We already know how to draw a line of boxes.
The challenge in this exercise is to make the color change at each step.

Hint: you can spin the fill color at each recursion.

See the soluঞon

Concentric Circles

Now let’s try a variaঞon on the theme, drawing concentric circles as shown in fig. 8.5. Here we are changing
the size rather than the color of the image at each step. Otherwise the pa�ern stays the same. Have a go at
implemenঞng it.

See the soluঞon

8.3. AUXILIARY PARAMETERS 83

Figure 8.4: Five boxes filled with changing colors starঞng from Royal Blue

Figure 8.5: Concentric circles, colored Royal Blue

84 CHAPTER 8. FRACTALS

Figure 8.6: Concentric circles with interesঞng color variaঞons

Once More, With Feeling

Now let’s combine both techniques to change size and color on each step, giving results like those shown in
fig. 8.6. Experiment unঞl you find something you like.

See the soluঞon

8.4 Nested Methods

Amethod is a declaraঞon. The body of amethod can contain declaraঞons and expressions. Therefore, amethod
declaraঞon can contain other method declaraঞons.

To see why this is useful, lets look at a method we wrote earlier:

def cross(count: Int): Image = {

val unit = Image.circle(20)

count match {

case 0 => unit

case n => unit.beside(unit.above(cross(n-1)).above(unit)).beside(unit)

}

}

We have declared unit inside the method cross. This means the declaraঞon of unit is only in scope within
the body of cross. It is good pracঞce to limit the scope of declaraঞons to the minimum needed, to avoid
accidentally shadowing other declaraঞons. However, let’s consider the runঞme behavior of cross and we’ll
see that is has some undesirable characterisঞcs.

We’ll use our subsঞtuঞon model to expand cross(1).

cross(1)

// Expands to

{

val unit = Image.circle(20)

8.4. NESTED METHODS 85

1 match {

case 0 => unit

case n => unit.beside(unit.above(cross(n-1)).above(unit)).beside(unit)

}

}

// Expands to

{

val unit = Image.circle(20)

unit.beside(unit.above(cross(0)).above(unit)).beside(unit)

}

// Expands to

{

val unit = Image.circle(20)

unit.beside(unit.above

{

val unit = Image.circle(20)

0 match {

case 0 => unit

case n => unit.beside(unit.above(cross(n-1)).above(unit)).beside(unit)

}

}

.above(unit)).beside(unit)

}

// Expands to

{

val unit = Image.circle(20)

unit.beside(unit.above

{

val unit = Image.circle(20)

unit

}

.above(unit)).beside(unit)

}

The point of this enormous expansion is to demonstrate that we’re recreaঞng unit every ঞme we recurse
within cross. We can prove this is true by prinঞng something every ঞme unit is created.

def cross(count: Int): Image = {

val unit = {

println("Creating unit")

Image.circle(20)

}

count match {

case 0 => unit

case n => unit.beside(unit.above(cross(n-1)).above(unit)).beside(unit)

}

}

cross(1)

// Creating unit

// Creating unit

// res1: Image = Beside(

// Beside(Circle(20.0), Above(Above(Circle(20.0), Circle(20.0)), Circle(20.0))),

// Circle(20.0)

//)

This doesn’t ma�er greatly for unit because it’s very small, but we could be doing something that takes up a
lot of memory or ঞme, and it’s undesirable to repeat it when we don’t have to.

We could solve this by shi[ing unit outside of cross.

86 CHAPTER 8. FRACTALS

val unit = {

println("Creating unit")

Image.circle(20)

}

// Creating unit

// unit: Image = Circle(20.0)

def cross(count: Int): Image = {

count match {

case 0 => unit

case n => unit beside (unit above cross(n-1) above unit) beside unit

}

}

cross(1)

// res3: Image = Beside(

// Beside(Circle(20.0), Above(Above(Circle(20.0), Circle(20.0)), Circle(20.0))),

// Circle(20.0)

//)

This is undesirable because unit now has a larger scope than needed. A be�er soluঞon it to use a nested or
internal method.

def cross(count: Int): Image = {

val unit = {

println("Creating unit")

Image.circle(20)

}

def loop(count: Int): Image = {

count match {

case 0 => unit

case n => unit beside (unit above loop(n-1) above unit) beside unit

}

}

loop(count)

}

cross(1)

// Creating unit

// res5: Image = Beside(

// Beside(Circle(20.0), Above(Above(Circle(20.0), Circle(20.0)), Circle(20.0))),

// Circle(20.0)

//)

This has the behavior we’re a[er, creaঞng unit only once while minimising its scope. The internal method loop
is using structural recursion exactly as before. We just need to ensure that we call it in cross. I usually name
this sort of internal method loop or iter (short for iterate) to indicate that they’re performing a loop.

This technique is just a small variaঞon of what we’ve done already, but let’s do a few exercises to make sure
we’ve got the pa�ern.

Exercises

Chessboard

Rewrite chessboard using a nestedmethod so that blackSquare, redSquare, and base are only created once
when chessboard is called.

8.5. EXERCISES 87

def chessboard(count: Int): Image = {

val blackSquare = Image.square(30) fillColor Color.black

val redSquare = Image.square(30) fillColor Color.red

val base =

(redSquare beside blackSquare) above (blackSquare beside redSquare)

count match {

case 0 => base

case n =>

val unit = cross(n-1)

(unit beside unit) above (unit beside unit)

}

}

See the soluঞon

Boxing Clever

Rewrite boxes, shown below, so that aBox is only in scope within boxes and only created once when boxes is
called.

val aBox = Image.square(20).fillColor(Color.royalBlue)

def boxes(count: Int): Image =

count match {

case 0 => Image.empty

case n => aBox.beside(boxes(n-1))

}

See the soluঞon

8.5 Exercises

We now have a number of new tools in our toolbox. It’s ঞme to get some pracঞce puমng them all together.

Here’s an example of the familiar chessboard pa�ern. We have used an auxillary parameter to pass along a
color that we change at each recursion. By changing the hue by a prime number we end up a complex pa�ern
with infrequently repeaঞng colors. See fig. 8.7 for an example.

def chessboard(count: Int, color: Color): Image =

count match {

case 0 =>

val contrast = color.spin(180.degrees)

val box = Image.square(20)

box

.fillColor(color)

.beside(box.fillColor(contrast))

.above(box.fillColor(contrast).beside(box.fillColor(color)))

case n =>

chessboard(n - 1, color.spin(17.degrees))

.beside(chessboard(n - 1, color.spin(-7.degrees)))

.above(

chessboard(n - 1, color.spin(-19.degrees))

.beside(chessboard(n - 1, color.spin(3.degrees)))

)

88 CHAPTER 8. FRACTALS

Figure 8.7: Chessboard with colors evolving at each recursive step.

}

Yourmission is to take the ideaswe’ve seen in this chapter, perhaps using the chessboard example for inspiraঞon,
and create your own artwork. No other guidelines this ঞme; it’s up to you and your imaginaঞon.

Chapter 9

Horঞculture and Higher-order Funcঞons

In this chapter we’re going to learn how to draw flowers and to use funcঞons as first-class values.

We know that programs work with values, but not all values are first-class. A first-class value is something we
can pass as a parameter to a method, or return as a result from a method call, or give a name using val.

If we pass a funcঞon as an argument to another funcঞon then:

• the funcঞon that is passed is being used as a first-class value; and
• the funcঞon that is receiving the funcঞon parameter is called a higher-order funcࢼon.

This terminology is not especially important, but you’ll encounter it in other wriঞng so it’s useful to know (at
least vaguely) what it means. It will soon become clearer when we see some examples.

So far we have used the terms funcࢼon and method interchangeably. We’ll soon see that in Scala these two
terms have disঞnct, though related, meanings.

Enough background. Let’s dive in to see:

• how we create funcঞons in Scala; and
• how we use first-class funcঞons to structure programs.

Our moঞvaঞng example for this will be drawing flowers as in fig. 9.1.

If you run the examples from the SBT console within Doodle they will just work. If not, you will need to
start your code with the following imports to make Doodle available.

import doodle.core._

import doodle.image._

import doodle.image.syntax._

import doodle.image.syntax.core._

import doodle.java2d._

9.1 Funcঞons

A funcঞon is basically a method, but we can use a funcঞon as a first-class value:

• we can pass it as an argument or parameter to a method or funcঞon;

89

90 CHAPTER 9. HORTICULTURE AND HIGHER-ORDER FUNCTIONS

Figure 9.1: A flower created using the techniques in this chapter

9.1. FUNCTIONS 91

• we can return it from a method or funcঞon; and
• we can give it a name using val.

Here’s an example where we give the name add42 to a funcঞon that adds 42 to its input.

val add42 = (x: Int) => x + 42

// add42: Int => Int = <function1>

We can call it just like we’d call a method.

add42(0)

// res0: Int = 42

This is an example of a funcঞon literal. Let’s learn about them now.

9.1.1 Funcঞon Literals

We’ve just seen an example of a funcঞon literal, which was

(x: Int) => x + 42

// res1: Int => Int = <function1>

The general syntax is an extension of this.

Funcঞon Literal Syntax

The syntax for declaring a funcঞon literal is

(parameter: type, ...) => expression

where - the opঞonal parameters are the names given to the funcঞon parameters; - the types are the
types of the funcঞon parameters; and - the expression determines the result of the funcঞon.

The parentheses around the parameters are opঞonal if the funcঞon has just a single parameter.

9.1.2 Funcঞon Types

To pass funcঞons to methods we need to know how to write down their types (because when we declare a
parameter we have to declare its type).

We write a funcঞon type like (A, B) => C where A and B are the types of the parameters and C is the result
type. The same pa�ern generalises from funcঞons of no arguments to an arbitrary number of arguments.

Here’s an example. We create a method that accepts a funcঞon, and that funcঞon is from Int to Int. We write
this type as Int => Int or (Int) => Int.

def squareF(x: Int, f: Int => Int): Int =

f(x) * f(x)

We can pass add42 to this method

92 CHAPTER 9. HORTICULTURE AND HIGHER-ORDER FUNCTIONS

squareF(0, add42)

// res2: Int = 1764

We could also pass a funcঞon literal

squareF(0, x => x + 42)

// res3: Int = 1764

Note that we didn’t have to put the parameter type on the funcঞon literal in this case because Scala has enough
informaঞon to infer the type.

Funcঞon Type Declaraঞon Syntax

To declare a funcঞon type, write

(A, B, ...) => C

where

• A, B, ... are the types of the input parameters; and
• C is the type of the result.

If a funcঞon only has one parameter the parentheses may be dropped:

A => B

9.1.3 Funcঞons as Objects

All first class values are objects in Scala, including funcঞons. This means funcঞons can have methods, including
some useful means for composiঞon.

val addTen = (a: Int) => a + 10

// addTen: Int => Int = <function1>

val double = (a: Int) => a * 2

// double: Int => Int = <function1>

val combined = addTen.andThen(double) // this composes the two functions

// combined: Int => Int = scala.Function1$$Lambda$9669/1403896095@119ecd3a // this composes the two

functions

combined(5)

// res4: Int = 30

Calling a funcঞon is actually calling the method called apply on the funcঞon. Scala allows a shortcut for any
object that has amethod called apply, where can drop themethod name apply andwrite the call like a funcঞon
call. This means the following are equivalent.

val halve = (a: Int) => a / 2

// halve: Int => Int = <function1>

halve(4)

// res5: Int = 2

halve.apply(4)

9.2. PARAMETRIC CURVES 93

// res6: Int = 2

9.1.4 Converঞng Methods to Funcঞons

Methods are very similar to funcঞons, so Scala provides a way to convert funcঞons to methods. If we follow a
method name with a _ it will be converted to a funcঞon.

def times42(x: Int): Int =

x * 42

val times42Function = times42 _

// times42Function: Int => Int = <function1>

Wecan alsowrite amethod call but replace all parameterswith _ and Scalawill convert themethod to a funcঞon.

val times42Function2 = times42(_)

// times42Function2: Int => Int = <function1>

Exercises

9.1.4.0.1 Funcঞon Literals Let’s get some pracঞce wriঞng funcঞon literals. Write a funcঞon literal that:

• squares it’s Int input;
• has a Color parameter and spins the hue of that Color by 15 degrees; and
• takes an Image input and creates four copies in a row, where each copy is rotated by 90 degrees relaঞve

to the previous image (use the rotate method on Image to achieve this.)

See the soluঞon

9.1.4.0.2 Funcঞon Types Here’s an interesঞng funcঞon we’ll do more with in later secঞons. We don’t need
to understand what it does right now, though you might want to experiment with it.

val roseFn = (angle: Angle) =>

Point.cartesian((angle * 7).cos * angle.cos, (angle * 7).cos * angle.sin)

What is the type of the funcঞon roseFn defined above? What does this type mean?

See the soluঞon

9.2 Parametric Curves

Right now we only know how to create basic shapes like circles and rectangles. We’ll need more control to
create the flower shapes that are our goal. We’re going to use a tool from mathemaঞcs known as a parametric
equaࢼon or parametric curve to do so.

A parametric equaঞon is a funcঞon from some input (the parameter in “parametric”) to a point, a locaঞon in
space. The input tells us how far along the curve we are. For example, a parametric equaঞon for a circle might
have as its input an angle and it would give us the point on the circle at that angle. In Scala we could write

94 CHAPTER 9. HORTICULTURE AND HIGHER-ORDER FUNCTIONS

Figure 9.2: Parametric circle with points drawn, from le[to right, every 90, 45, and 22.5 degrees.

def parametricCircle(angle: Angle): Point =

???

If we choose lots of different values for the input, and then draw a shape at each point we get back from the
parametric equaঞon, we can suggest the shape of the curve.

In fig. 9.2 we give an example of drawing small circles at the points generated by the parametric equaঞon for a
circle. Going from le[to right we draw points every 90, 45, and 22.5 degrees. You can see how the outline of
the shape, the large circle, becomes clearer as we draw more points.

To create parametric curves we need to learn 1) how to represent points in Doodle, 2) how to posiঞon an image
at a parঞcular point in space, and 3) revise a bit of geometry you might not have touched since high school.
Let’s look at each item in turn.

9.3 Points

In Doodle we have a Point type to represent a posiঞon in two dimensions. We have two equivalent represen-
taঞons in terms of:

• x and y coordinates, called a cartesian representaঞon; and
• in terms of an angle and distance (the radius) at that angle from the origin, called a polar representaঞon.

This difference is shown in fig. 9.3.

We can create points in the cartesian representaঞon using Point(Double, Double) where the two param-
eters are the x and y coordinates, and in the polar representaঞon using Point(Double, Angle) where we
specify the radius and the angle. The table below shows the main methods on Point.

Constructor Type Descripঞon Example

Point(Double, Double) Point Constructs a Point using
the cartesian
representaঞon.

Point(1.0, 1.0)

Point(Double, Angle) ‘ ‘ Point Constructs a Point using
the polar representaঞon.

Point(1.0, 90.degrees)

Point.zero Point Constructs a Point at the
origin (x and y are zero)

Point.zero

9.4. FLEXIBLE LAYOUT 95

Constructor Type Descripঞon Example

Point.x Double Gets the x coordinate of the
Point.

Point.zero.x

Point.y Double Gets the y coordinate of the
Point.

Point.zero.y

Point.r Double Gets the radius of the
Point.

Point.zero.r

Point.angle Angle Gets the angle of the Point. Point.zero.angle

9.4 Flexible Layout

Can we posiঞon an Image at a point? So far we only know how to layout images with on, beside, and above.
We need an addiঞonal tool, the at method, to achieve more flexible layout. Here’s an example using at that
draws a dot at the corners of a square.

val dot = Image.circle(5).strokeWidth(3).strokeColor(Color.crimson)

val squareDots =

dot.at(0, 0)

.on(dot.at(0, 100))

.on(dot.at(100, 100))

.on(dot.at(100, 0))

This produces the image shown in fig. 9.4.

To understand how at layout works, and why we have to place the dots on each other, we need to know a bit
more about how Doodle does layout.

Every Image in Doodle has a point called its origin, and a bounding boxwhich determines the limits of the image.
By convenঞon the origin is in the center of the bounding box but this is not required. We can see the origin
and bounding box of an Image by calling the debug method. In fig. 9.5 we show the output of the code

val c = Image.circle(40)

val c1 = c.beside(c.at(10, 10)).beside(c.at(10, -10)).debug

val c2 = c.debug.beside(c.at(10, 10).debug).beside(c.at(10, -10).debug)

val c3 = c.debug.beside(c.debug.at(10, 10)).beside(c.debug.at(10, -10))

c1.above(c2).above(c3)

This shows how the origin and bounding box change as we combines Images.

Whenwe layout Images using above, beside, or on it is the bounding boxes and origins that determine how the
individual components are posiঞoned relaঞve to one another. For on the rule is that the origins are placed on
top of one another. For beside the rule is that origins are horizontally aligned and placed so that the bounding
boxes just touch. The origin of the compound image is placed equidistant from the le[and right edges of the
compound bounding box on the horizontal line that connects the origins of the component images. The rule
for above is the same as beside, but we use verঞcal alignment instead of horizontal alignment.

Using atwe canmove an Image relaঞve to its origin. In the examples we’re using here wewant all the elements
to share the same origin, so we use on to combine Images that we have moved using at.

There are four ways we can call at:

• by passing the x- and y-offset, as in dot.at(100, 100);
• by passing the radius and angle, as in dot.at(100, 90.degrees);

96 CHAPTER 9. HORTICULTURE AND HIGHER-ORDER FUNCTIONS

Figure 9.3: A point represented in cartesian (x and y) coordinates and polar (radius and angle) coordinates

Figure 9.4: Using at layout to posiঞon four dots at the corners of a square.

9.4. FLEXIBLE LAYOUT 97

Figure 9.5: Using the debug method to inspect the origin and bounding box of an Image

98 CHAPTER 9. HORTICULTURE AND HIGHER-ORDER FUNCTIONS

• by passing a Point, as in dot.at(Point(100, 100)); or
• by passing a Vec (a vector) giving the offset, as in dot.at(Vec(100, 100)).

We can convert a Point to a Vec using the toVec method.

Point.cartesian(1.0, 1.0).toVec

// res1: Vec = Vec(1.0, 1.0)

9.5 Geometry

The final building block is the geometry to posiঞon points. If a point is posiঞoned at a distance r from the origin
at an angle a, the x- and y-coordinates are (a.cos) * r and (a.sin) * r respecঞvely. Alternaঞvely we can
just use polar form! For example, here’s how we would posiঞon a point at a distance of 1 and an angle of 45
degrees.

val polar = Point(1.0, 45.degrees)

// polar: Point = Polar(1.0, Angle(0.7853981633974483))

val cartesian = Point((45.degrees.cos) * 1.0, (45.degrees.sin) * 1.0)

// cartesian: Point = Cartesian(0.7071067811865476, 0.7071067811865475)

// They are the same

polar.toCartesian == cartesian

// res2: Boolean = true

cartesian.toPolar == polar

// res3: Boolean = true

9.6 Puমng It All Together

We can put this all together to create a parametric circle. In cartesian coordinates the code for a parametric
circle with radius 200 is

def parametricCircle(angle: Angle): Point =

Point.cartesian(angle.cos * 200, angle.sin * 200)

In polar form it is simply

def parametricCircle(angle: Angle): Point =

Point.polar(200, angle)

Now we could sample a number of points evenly spaced around the circle. To create an image we can draw
something at each point (say, a triangle).

def sample(samples: Int): Image = {

// Angle.one is one complete turn. I.e. 360 degrees

val step = Angle.one / samples

val dot = Image

.triangle(10, 10)

.fillColor(Color.limeGreen)

.strokeColor(Color.lawngreen)

def loop(count: Int): Image = {

val angle = step * count

count match {

case 0 => Image.empty

case n =>

9.6. PUTTING IT ALL TOGETHER 99

Figure 9.6: Triangles arranged in a circle, using the code from sample above.

dot.at(parametricCircle(angle)).on(loop(n - 1))

}

}

loop(samples)

}

This is a structural recursion, which is hopefully a familiar pa�ern by now.

If we draw this we’ll see the outline of a circle suggested by the triangles. See fig. 9.6, which shows the result
of sample(72).

100 CHAPTER 9. HORTICULTURE AND HIGHER-ORDER FUNCTIONS

9.6.1 Parametric Curves as First-class Funcঞons

So far we haven’t seen anything that requires we use our parametric curves as funcঞons instead of methods
(and, indeed, we have defined them as method though we know we can easily convert methods to funcঞons.)
It’s ঞme we got something useful from funcঞons. Remember that funcঞons are first-class values, which means:
we can pass them to a method, we can return them from a method, and we can give them a name using val.
We’re going to see an example where the first property—the ability to pass them as parameters—is useful.

We’ve just defined a method called sample that samples from our parametric curve. Right now it is restricted
to sampling from the method parametricCircle. It would make a lot of sense to reuse this method with
different parametric curves, which means we need to be able to pass a parametric curve to sample from to the
sample method. We can do this with a funcঞon parameter. Here is what the code might look like.

def sample(samples: Int, dot: Image, curve: Angle => Point): Image = {

val step = Angle.one / samples

def loop(count: Int): Image = {

val angle = step * count

count match {

case 0 => Image.empty

case n =>

dot.at(curve(angle)).on(loop(n - 1))

}

}

loop(samples)

}

In this implementaঞon of sample I have added two new parameters, the parametric curve to sample from and
the Image to use to draw the samples. This gives us more flexibility in the output. Now we just need to define
some more parametric curves, which is what the next exercise involves.

Exercises

We have some new tools in our toolbox. It’s ঞme to have some fun exploring what we can do with them.

9.6.1.0.1 Spirals To create a circle we keep the radius constant as the angle increases. If, instead, the radius
increases as the angle increases we’ll get a spiral. (How quickly should the radius increase? It’s up to you!
Different choices will give you different spirals.)

Implement a funcঞon or method parametricSpiral that creates a spiral.

See the soluঞon

9.6.1.0.2 Samples Use the parametric curves we have defined so far to create something interesঞng. There
is an example in fig. 9.7

9.7 Flowers and Other Curves

In the previous secঞon we saw that is was useful for methods to accept funcঞons as parameters. In this secঞon
we’ll see that it is useful for methods to return funcঞons.

We’ve seen all the basic steps we need to make our flowers. Now we just need to know the curve that makes
the flower shape! The shape I used is known as the rose curve. One example is shown in fig. 9.8.

https://en.wikipedia.org/wiki/Rose_(mathematics)

9.7. FLOWERS AND OTHER CURVES 101

Figure 9.7: A picture created using the parametric curves we have seen so far.

102 CHAPTER 9. HORTICULTURE AND HIGHER-ORDER FUNCTIONS

Figure 9.8: An example of the rose curve.

9.7. FLOWERS AND OTHER CURVES 103

Figure 9.9: Examples of rose curves, with the parameter k chosen as 5, 8, or 9.

The code for the parametric curve that gives this shape is below.

// Parametric equation for rose with k = 7

val rose7 = (angle: Angle) =>

Point((angle * 7).cos * 200, angle)

You may wonder why I called this funcঞon rose7. It’s because we can vary the shape by changing the value 7
to something else. We could make a method or funcঞon to which we pass the value of this parameter and this
funcঞon would return a parঞcular rose curve. Here’s that idea in code.

def rose(k: Int): Angle => Point =

(angle: Angle) => Point((angle * k).cos * 200, angle)

The rose method describes a family of curves. They all look similar, and we create individuals by choosing
a parঞcular value for the parameter k. In fig. 9.9 we show more rose curves, this ঞme with k as 5, 8, and 9
respecঞvely.

Let’s look at some other interesঞng curves. In fig. 9.10 we show examples of a family of curves called Lissajous
curves.

The code for this is
def lissajous(a: Int, b: Int, offset: Angle): Angle => Point =

(angle: Angle) =>

Point(100 * ((angle * a) + offset).sin, 100 * (angle * b).sin)

The examples in fig. 9.10 use values of a and b of 1, 2, or 3, and the offset set to 90 degrees.

There are an unlimited number of funcঞons we could use to create interesঞng curves. Let’s see one more
example, this ঞme of what known as an epicycloid. An epicycloid is produced when we trace a point on a circle
rotaঞng around another circle. We can stack circles on top of circles, and change the speed at which they rotate,
to produce many different curves. For our example we are going to fix the number and radius of the circles and
allow their speed of rotaঞon to vary. Here is the code:

def epicycloid(a: Int, b: Int, c: Int): Angle => Point =

(angle: Angle) =>

(Point(75, angle * a).toVec + Point(32, angle * b).toVec + Point(15, angle * c).toVec).toPoint

You might noঞce this code converts points to vectors and back again. This is a li�le technical detail (we cannot
add points but we can add vectors) that isn’t important if you aren’t familiar with vectors.

In fig. 9.11 we see three examples created by choosing the parameters a, b, c, as (1, 6, 14), (7, 13, 25), and (1, 7,
-21) respecঞvely.

https://en.wikipedia.org/wiki/Lissajous_curve
https://en.wikipedia.org/wiki/Lissajous_curve
https://en.wikipedia.org/wiki/Epicycloid

104 CHAPTER 9. HORTICULTURE AND HIGHER-ORDER FUNCTIONS

Figure 9.10: Examples of Lissajous curves, with the parameters a and b chosen as 1, 2, or 3.

Figure 9.11: Examples of epicycloid curves, with the parameters chosen as (1, 6, 14), (7, 13, 25), and (1, 7 -21).

9.8. HIGHER ORDER METHODS AND FUNCTIONS 105

Figure 9.12: Illustraঞng funcঞon composiঞon by showing the output of the individual components and the
composiঞon.

Exercise

We now have a lot of tools to play with. Your task here is simply to use some of the ideas we’ve just seen to
make an image that you like. For inspiraঞon you could use the image that we started the chapter with, but don’t
let it constrain you if you think of something else to explore.

9.8 Higher Order Methods and Funcঞons

In previous secঞons we have seen the uঞlity of passing funcঞons to methods and returning funcঞons from
methods. In this secঞon we’ll see the usefulness of *funcঞon composiঞon**. Composiঞon, in the mathemaঞcal
rather than arঞsঞc sense, means creaঞng something more complex by combining simpler parts. We could say
we compose the numbers 1 and 1, using addiঞon, to produce 2. By composing funcঞons we mean to create a
funcঞon that connects the output of one component funcঞon to the input of another component funcঞon.

Here’s an example. We use the andThen method to create a funcঞon that connects the output of the first
funcঞon to the input of the second funcঞon.

val dropShadow = (image: Image) =>

image.on(image.strokeColor(Color.black).fillColor(Color.black).at(5, -5))

val mirrored = (image: Image) =>

image.beside(image.transform(Transform.horizontalReflection))

val composed = mirrored.andThen(dropShadow)

In fig. 9.12 we see the output of the program

val star = Image

.star(100, 50, 5, 0.degrees)

.fillColor(Color.fireBrick)

.strokeColor(Color.dodgerBlue)

.strokeWidth(7.0)

dropShadow(star)

.beside(mirrored(star))

.beside(composed(star))

This shows how the composed funcঞon applies the output of the first funcঞon to the second funcঞon: we first
mirror the funcঞon then add a drop shadow.

Let’s see how we can apply funcঞon composiঞon to our examples of parametric curves. One limitaঞon
of the parametric cures we’ve created so far is that their size is fixed. For example when we defined
parametricCircle we fixed the radius at 200.

106 CHAPTER 9. HORTICULTURE AND HIGHER-ORDER FUNCTIONS

def parametricCircle(angle: Angle): Point =

Point.polar(200, angle)

What if we want to create circles of different radius? We could use a method that returns a funcঞon like so.

def parametricCircle(radius: Double): Angle => Point =

(angle: Angle) => Point.polar(radius, angle)

This would be a reasonable soluঞon but we’re going to explore a different approach using our new tool of
funcঞon composiঞon. Our approach will be this:

• each parametric curve will be of some default size that we’ll loosely define as “usually between 0 and 1”;
and

• we’ll define a funcঞon scale that will change the size as appropriate.

A quick example will make this more concrete. Let’s redefine parametricCircle so the radius is 1.

val parametricCircle: Angle => Point =

(angle: Angle) => Point(1.0, angle)

Now we can define scale.

def scale(factor: Double): Point => Point =

(point: Point) => Point(point.r * factor, point.angle)

We can use funcঞon composiঞon to create circles of different sizes as follows.

val circle100 = parametricCircle.andThen(scale(100))

val circle200 = parametricCircle.andThen(scale(200))

val circle300 = parametricCircle.andThen(scale(300))

We can use the same approach for our spiral, adjusঞng the funcঞon slightly so the radius of the spiral varies
from about 0.36 at 0 degrees to 1 at 360 degrees.

val parametricSpiral: Angle => Point =

(angle: Angle) => Point(Math.exp(angle.toTurns - 1), angle)

Then we can compose with scale to produce spirals of different size.

val spiral100 = parametricSpiral.andThen(scale(100))

val spiral200 = parametricSpiral.andThen(scale(200))

val spiral300 = parametricSpiral.andThen(scale(300))

What else can we do with funcঞon composiঞon?

Our parametric funcঞons have type Angle => Point. We can compose these with funcঞons of type Point
=> Image and with this setup we can make the “dots” from which we build our images depend on the point.

Here’s an example when the dots get bigger as the angle increases.

9.8. HIGHER ORDER METHODS AND FUNCTIONS 107

val growingDot: Point => Image =

(pt: Point) => Image.circle(pt.angle.toTurns * 20).at(pt)

val growingCircle = parametricCircle

.andThen(scale(100))

.andThen(growingDot)

Exercise: Sample

If we want to draw this funcঞon we’ll need to change sample so the parametric has type Angle => Image

instead of Angle => Point. In other words we want the following skeleton.

def sample(samples: Int, curve: Angle => Image): Image =

???

Implement sample.

See the soluঞon

Once we’ve implemented sample we can start drawing pictures. For example, in fig. 9.13 we have the output
of growingCircle above.

9.8.1 More Uses of Composiঞon

At this point we can do a lot. Let’s see another example. Remember the concentric circles exercise we used as
an example:

def concentricCircles(count: Int, size: Int): Image =

count match {

case 0 => Image.empty

case n => Image.circle(size).on(concentricCircles(n-1, size + 5))

}

This pa�ern allows us to create many different images by changing the use of Image.circle to another shape.
However, each ঞme we provide a new replacement for Image.circle, we also need a new definiঞon of
concentricCircles to go with it.

We can make concentricCircles completely general by supplying the replacement for Image.circle as a
parameter. Here we’ve renamed the method to concentricShapes, as we’re no longer restricted to drawing
circles, and made singleShape responsible for drawing an appropriately sized shape.

def concentricShapes(count: Int, singleShape: Int => Image): Image =

count match {

case 0 => Image.empty

case n => singleShape(n).on(concentricShapes(n-1, singleShape))

}

Now we can re-use the same definiঞon of concentricShapes to produce plain circles, squares of different
hue, circles with different opacity, and so on. All we have to do is pass in a suitable definiঞon of singleShape:

// Passing a function literal directly:

val blackCircles: Image =

concentricShapes(10, (n: Int) => Image.circle(50 + 5*n))

// Converting a method to a function:

def redCircle(n: Int): Image =

108 CHAPTER 9. HORTICULTURE AND HIGHER-ORDER FUNCTIONS

Figure 9.13: A circle created by composing smaller components.

9.8. HIGHER ORDER METHODS AND FUNCTIONS 109

Figure 9.14: Colors and Shapes

Image.circle(50 + 5*n).strokeColor(Color.red)

val redCircles: Image =

concentricShapes(10, redCircle _)

Exercises

The Colour and the Shape

Starঞng with the code below we are going to write color and shape funcঞons to produce the image shown in
fig. 9.14.

def concentricShapes(count: Int, singleShape: Int => Image): Image =

count match {

case 0 => Image.empty

case n => singleShape(n).on(concentricShapes(n-1, singleShape))

}

The concentricShapes method is equivalent to the concentricCircles method from previous exercises.
The main difference is that we pass in the definiঞon of singleShape as a parameter.

Let’s think about the problem a li�le. We need to do two things:

1. write an appropriate definiঞon of singleShape for each of the three shapes in the target image; and

2. call concentricShapes three ঞmes, passing in the appropriate definiঞon of singleShape each ঞme
and puমng the results beside one another.

Let’s look at the definiঞon of the singleShape parameter in more detail. The type of the parameter is Int =>

Image, which means a funcঞon that accepts an Int parameter and returns an Image. We can declare a method
of this type as follows:

def outlinedCircle(n: Int): Image =

Image.circle(n * 10)

We can convert this method to a funcঞon, and pass it to concentricShapes to create an image of concentric
black outlined circles:

110 CHAPTER 9. HORTICULTURE AND HIGHER-ORDER FUNCTIONS

Figure 9.15: Many outlined circles

concentricShapes(10, outlinedCircle _)

This produces the output shown in fig. 9.15.

The rest of the exercise is just a ma�er of copying, renaming, and customising this funcঞon to produce the
desired combinaঞons of colours and shapes:

def circleOrSquare(n: Int) =

if(n % 2 == 0) Image.rectangle(n*20, n*20) else Image.circle(n*10)

concentricShapes(10, outlinedCircle).beside(concentricShapes(10, circleOrSquare))

See fig. 9.16 for the output.

For extra credit, when you’ve wri�en your code to create the sample shapes above, refactor it so you have two
sets of base funcঞons—one to produce colours and one to produce shapes. Combine these funcঞons using a

9.9. EXERCISES 111

Figure 9.16: Many outlined circles beside many circles and squares

combinator as follows, and use the result of the combinator as an argument to concentricShapes

def colored(shape: Int => Image, color: Int => Color): Int => Image =

(n: Int) => ???

See the soluঞon

More Shapes

The concentricShapes methods takes an Int => Image funcঞon, and we can construct such as funcঞon
using sample, the parametric curves we created earlier, and the various uঞliঞes we have created along the way.
There is an example is fig. 9.17.

The code to create this is below.

def dottyCircle(n: Int): Image =

sample(

72,

parametricCircle.andThen(scale(100 + n * 24)).andThen(growingDot)

)

concentricShapes(10, colored(dottyCircle, spinning))

Use the techniques we’ve seen so far to create a picture of your choosing (perhaps similar to the flower with
which we started the chapter). No soluঞon here—there is no right or wrong answer.

9.9 Exercises

Now we are chock full of knowledge about funcঞons, we’re going to return to the problem of drawing flowers.
We’ll be asking you to do more design work here than we have done previously.

112 CHAPTER 9. HORTICULTURE AND HIGHER-ORDER FUNCTIONS

Figure 9.17: Concentric do�y circles

9.10. CONCLUSIONS 113

Your task is to break down the task of drawing a flower into small funcঞons that work together. Try to give
yourself as much creaঞve freedom as possible, by breaking out each individual component of the task into a
funcঞon.

Try to do this now. If you run into problems look at our decomposiঞon below.

9.9.1 Components

We’ve idenঞfied two components of drawing flowers:

• the parametric equaঞon; and
• the structural recursion over angles.

What other components might we abstract into funcঞons? What are their types? (This is a deliberately open
ended quesঞon. Explore!)

See the soluঞon

9.9.2 Combine

Now we’ve broken out the components we can combine them to create interesঞng results. Do this now.

See the soluঞon

9.9.3 Experiment

Now experiment with the creaঞve possibiliঞes open to you!

See the soluঞon

9.10 Conclusions

In this chapter we looked at funcঞons. We saw that funcঞons are, unlike methods first-class values. This means
we can pass funcঞons to methods (or other funcঞons), return them frommethods and funcঞons, and give them
a name using val.

We saw that, because funcঞons are values, we can compose them. This means to create new funcঞons by
combining exisঞng funcঞons. We saw a few different ways of doing this. Funcঞon composiঞon allowed us to
build a toolbox of useful funcঞons that we could then combine to create interesঞng results. Composiঞon is one
of the key ideas in funcঞonal programming. Doodle is another example of composiঞon: we combine Images
using methods like on and above to create new Images.

114 CHAPTER 9. HORTICULTURE AND HIGHER-ORDER FUNCTIONS

Chapter 10

Shapes, Sequences, and Stars

In this chapter we will learn how to build our own shapes out of the primitve lines and curves that make up the
triangles, rectangles, and circles we’ve used so far. In doing so we’ll learn how to represent sequences of data,
and manipulate such sequences using higher-order funcঞons that abstract over structural recursion. That’s
quite a lot of jargon, but we hope you’ll see it’s not as difficult as it sounds!

If you run the examples from the SBT console within Doodle they will just work. If not, you will need to
start your code with the following imports to make Doodle available.

import doodle.core._

import doodle.image._

import doodle.image.syntax._

import doodle.image.syntax.core._

import doodle.java2d._

10.1 Paths

All shapes in Doodle are ulঞmately represented as paths. You can think of a path as giving a sequence of
movements for an imaginary pen, starঞng from the local origin. Pen movements come in three varieঞes:

• moving the pen to a point without drawing a line;

• drawing a straight line from the current posiঞon to a point; and

• drawing a Bezier curve from the current posiঞon to a point, with the shape of the curve determined by
two control points.

Paths themselves come in two varieঞes:

• open paths, where the end of the path is not necessarily the starঞng point; and
• closed paths, that end where they begin—and if the path doesn’t end where it started a line will be

inserted to make it so.

The picture in fig. 10.1 illustrates the components that can make up a path, and shows the difference between
open and closed paths.

115

https://en.wikipedia.org/wiki/Bézier_curve

116 CHAPTER 10. SHAPES, SEQUENCES, AND STARS

Figure 10.1: The same paths draw as open (top) and closed (bo�om) paths. Noঞce how the open triangle is not
properly joined at the bo�om le[, and the closed curve inserts a straight line to close the shape.

10.1. PATHS 117

10.1.1 Creaঞng Paths

Now we know about paths, how do we create them in Doodle? Here’s the code that created fig. ??.

import doodle.core.PathElement._

val triangle =

List(

lineTo(Point(50, 100)),

lineTo(Point(100, 0)),

lineTo(Point(0, 0))

)

val curve =

List(curveTo(Point(50, 100), Point(100, 100), Point(150, 0)))

def style(image: Image): Image =

image.strokeWidth(6.0)

.strokeColor(Color.royalBlue)

.fillColor(Color.skyBlue)

val openPaths =

style(Image.openPath(triangle).beside(Image.openPath(curve)))

val closedPaths =

style(Image.closedPath(triangle).beside(Image.closedPath(curve)))

val paths = openPaths.above(closedPaths)

From this code we can see we create paths using the openPath and closePathmethods on Image, just as we
create other shapes. A path is created from a List of PathElement. The different kinds of PathElement are
created by calling methods on the PathElement object, as described in tbl. 10.1. In the code above we used
the declaraঞon import doodle.core.PathElement._ to make all the methods on PathElement available in
the local scope.

Table 10.1: How to create the three different types of PathElement.

Method Descripঞon Example

PathElement.moveTo(Point) Move the pen to Point
without drawing.

PathElement.moveTo(Point(1,

1))

PathElement.lineTo(Point) ‘ Draw a straight line to Point‘ PathElement.lineTo(Point(2,

2))

PathElement.curveTo(Point, Point,

Point)

Draw a curve. The first two
points specify control points
and the last point is where
the curve ends.

PathElement.curveTo(Point(1,0),

Point(0,1),

Point(1,1))

Construcঞng a List is straight-forward: we just call List with the elements we want the list to contain. Here
are some examples.

// List of Int

List(1, 2, 3)

// res0: List[Int] = List(1, 2, 3)

// List of Image

118 CHAPTER 10. SHAPES, SEQUENCES, AND STARS

Figure 10.2: A triangle, square, and pentagon, defined using paths.

List(Image.circle(10), Image.circle(20), Image.circle(30))

// res1: List[Image] = List(Circle(10.0), Circle(20.0), Circle(30.0))

// List of Color

List(Color.paleGoldenrod, Color.paleGreen, Color.paleTurquoise)

// res2: List[Color] = List(

// RGBA(UnsignedByte(110), UnsignedByte(104), UnsignedByte(42), Normalized(1.0)),

// RGBA(UnsignedByte(24), UnsignedByte(123), UnsignedByte(24), Normalized(1.0)),

// RGBA(UnsignedByte(47), UnsignedByte(110), UnsignedByte(110), Normalized(1.0))

//)

Noঞce the type of a List includes the type of the elements, wri�en in square brackets. So the type of a list of
integers is wri�en List[Int] and a list of PathElement is wri�en List[PathElement].

Exercises

Polygons

Create paths to define a triangle, square, and pentagon. Your image might look like fig. 10.2. Hint: you might
find it easier to use polar coordinates to define the polygons.

See the soluঞon

Curves

Repeat the exercise above, but this ঞme use curves instead of straight lines to create some interesঞng shapes.
Our curvy polygons are shown in fig. 10.3. Hint: you’ll have an easier ঞme if you generalise into a method your
code for creaঞng a curve.

See the soluঞon

10.2 Working with Lists

At this point youmight be thinking itwould be nice to create amethod to drawpolygons rather than construcঞng
each one by hand. There is clearly a repeaঞng pa�ern to their construcঞon and we would be able to generalise

10.2. WORKINGWITH LISTS 119

Figure 10.3: A curvy triangle, square, and polygon, defined using paths.

this pa�ern if we knew how to create a list of arbitrary size. It’s ঞme we learned more about building and
manipulaঞng lists.

10.2.1 The Recursive Structure of Lists

You’ll recall when we introduced structural recursion over the natural numbers we said we could transform their
recursive structure into any other recursive structure. We demonstrated this for concentric circles and a variety
of other pa�erns.

Lists have a recursive structure, and one that is very similar to the structure of the natural numbers. A List is

• the empty list Nil; or
• a pair of an element a and a List, wri�en a :: tail, where tail is the rest of the list.

For example, we can write out the list List(1, 2, 3, 4) in its “long” form as

1 :: 2 :: 3 :: 4 :: Nil

// res0: List[Int] = List(1, 2, 3, 4)

Noঞce the similarity to the natural numbers. Earlier we noted we can expand the structure of a natural number
so we could write, say, 3 as 1 + 1 + 1 + 0. If we replace + with :: and 0 with Nil we get the List 1 :: 1

:: 1 :: Nil.

What does this mean? It means we can easily transform a natural number into a List using our familiar tool of
structural recursion¹. Here’s a very simple example, which given a number builds a list of that length containing
the String “Hi”.

def sayHi(length: Int): List[String] =

length match {

case 0 => Nil

case n => "Hi" :: sayHi(n - 1)

}

sayHi(5)

¹This connecঞon goes deeper. We can abstract the idea of things that can be “added” into a concept called a monoid, and a list
represents a parঞcular type of monoid called the free monoid. We aren’t going to work with this abstracঞon in Creaঞve Scala but
you’re encouraged to explore on your own!

120 CHAPTER 10. SHAPES, SEQUENCES, AND STARS

// res1: List[String] = List("Hi", "Hi", "Hi", "Hi", "Hi")

The code here is transforming:

• 0 to Nil, for the base case; and
• n (which, remember, we think of as 1 + m) to "Hi" :: sayHi(n - 1), transforming 1 to "Hi", + to ::,

and recursing as usual on m (which is n - 1).

This recursive structure alsomeanswe can transform lists into other recursive structures, such a natural number,
different lists, chessboards, and so on. Here we increment every element in a list—that is, transform a list to a
list—using structural recursion.

def increment(list: List[Int]): List[Int] =

list match {

case Nil => Nil

case hd :: tl => (hd + 1) :: increment(tl)

}

increment(List(1, 2, 3))

// res2: List[Int] = List(2, 3, 4)

Here we sum the elements of a list of integers—that is, transform a list to a natural number—using structural
recursion.

def sum(list: List[Int]): Int =

list match {

case Nil => 0

case hd :: tl => hd + sum(tl)

}

sum(List(1, 2, 3))

// res3: Int = 6

Noঞce when we take a List apart with pa�ern matching we use the same hd :: tl syntax we use when we
construct it. This is an intenঞonal symmetry.

10.2.2 Type Variables

What about finding the length of a list? We know we can use our standard tool of structural recursion to write
the method. Here’s the code to calculate the length of a List[Int].

def length(list: List[Int]): Int =

list match {

case Nil => 0

case hd :: tl => 1 + length(tl)

}

Note that we don’t do anything with the elements of the list—we don’t really care about their type. Using the
same code skeleton can just as easily calculate the length of a List[Int] as a List[HairyYak] but we don’t
currently know how to write down the type of a list where we don’t care about the type of the elements.

Scala lets us write methods that can work with any type, by using what is called a type variable. A type variable
is wri�en in square brackets like [A] and comes a[er the method name and before the parameter list. A type
variable can stand in for any specific type, and we can use it in the parameter list or result type to indicate some
type that we don’t know up front. For example, here’s how we can write length so it works with lists of any
type.

10.2. WORKINGWITH LISTS 121

def length[A](list: List[A]): Int =

list match {

case Nil => 0

case hd :: tl => 1 + length(tl)

}

Structural Recursion over a List

A List of elements of type A is:

• the empty list Nil; or
• an element a of type A and a tail of type List[A]: a :: tail

The structural recursion skeleton for transforming list of type List[A] to some type B has shape

def doSomething[A,B](list: List[A]): B =

list match {

case Nil => ??? // Base case of type B here

case hd :: tl => f(hd, doSomething(tl))

}

where f is a problem specific method combining hd and the result of the recursive call to produce some-
thing of type B.

Exercises

Building Lists

In these exercises we get some experience construcঞng lists using structural recursion on the natural numbers.

Write a method called ones that accepts an Int n and returns a List[Int] with length n and every element 1.
For example

ones(3)

// res5: List[Int] = List(1, 1, 1)

See the soluঞon

Write a method descending that accepts an natural number n and returns a List[Int] containing the natural
numbers from n to 1 or the empty list if n is zero. For example

descending(0)

// res8: List[Int] = List()

descending(3)

// res9: List[Int] = List(3, 2, 1)

See the soluঞon

Write a method ascending that accepts a natural number n and returns a List[Int] containing the natural
numbers from 1 to n or the empty list if n is zero.

122 CHAPTER 10. SHAPES, SEQUENCES, AND STARS

ascending(0)

// res13: List[Int] = List()

ascending(3)

// res14: List[Int] = List(1, 2, 3)

See the soluঞon

Create a method fill that accepts a natural number n and an element a of type A and constructs a list of length
n where all elements are a.

fill(3, "Hi")

// res18: List[String] = List("Hi", "Hi", "Hi")

fill(3, Color.blue)

// res19: List[Color] = List(

// RGBA(

// UnsignedByte(-128),

// UnsignedByte(-128),

// UnsignedByte(127),

// Normalized(1.0)

//),

// RGBA(

// UnsignedByte(-128),

// UnsignedByte(-128),

// UnsignedByte(127),

// Normalized(1.0)

//),

// RGBA(

// UnsignedByte(-128),

// UnsignedByte(-128),

// UnsignedByte(127),

// Normalized(1.0)

//)

//)

See the soluঞon

Transforming Lists

In these exercises we pracঞce the other side of list manipulaঞon—transforming lists into elements of other
types (and someঞmes, into different lists).

Write a method double that accepts a List[Int] and returns a list with each element doubled.

double(List(1, 2, 3))

// res23: List[Int] = List(2, 4, 6)

double(List(4, 9, 16))

// res24: List[Int] = List(8, 18, 32)

See the soluঞon

Write a method product that accepts a List[Int] and calculates the product of all the elements.

product(Nil)

// res28: Int = 1

product(List(1,2,3))

// res29: Int = 6

10.3. TRANSFORMING SEQUENCES 123

See the soluঞon

Write a method contains that accepts a List[A] and an element of type A and returns true if the list contains
the element and false otherwise.

contains(List(1,2,3), 3)

// res33: Boolean = true

contains(List("one", "two", "three"), "four")

// res34: Boolean = false

See the soluঞon

Write a method first that accepts a List[A] and an element of type A and returns the first element of the
list if it is not empty and otherwise returns the element of type A passed as a aprameter.

first(Nil, 4)

// res38: Int = 4

first(List(1,2,3), 4)

// res39: Int = 1

See the soluঞon

Challenge Exercise: Reverse

Write a method reverse that accepts a List[A] and reverses the list.

reverse(List(1, 2, 3))

// res43: List[Int] = List(3, 2, 1)

reverse(List("a", "b", "c"))

// res44: List[String] = List("c", "b", "a")

See the soluঞon

Polygons!

At last, let’s return to our example of drawing polygons. Write a method polygon that accepts the number of
sides of the polygon and the starঞng rotaঞon and produces a Image represenঞng the specified regular polygon.
Hint: use an internal accumulator.

Use this uঞlity to create an interesঞng picture combining polygons. Our rather unimaginaঞve example is in
fig. 10.4. We’re sure you can do be�er.

See the soluঞon

10.3 Transforming Sequences

We’ve seen that using structural recursion we can create and transform lists. This pa�ern is simple to use and
to understand, but it requires we write the same skeleton ঞme and again. In this secঞon we’ll learn that we
can replace structural recursion in some cases by using a method on List called map. We’ll also see that other
useful datatypes provide this method and we can use it as a common interface for manipulaঞng sequences.

124 CHAPTER 10. SHAPES, SEQUENCES, AND STARS

Figure 10.4: Concentric polygons with pastel gradient fill.

10.3. TRANSFORMING SEQUENCES 125

10.3.1 Transforming the Elements of a List

In the previous secঞon we saw several examples where we transformed one list to another. For example, we
incremented the elements of a list with the following code.

def increment(list: List[Int]): List[Int] =

list match {

case Nil => Nil

case hd :: tl => (hd + 1) :: tl

}

increment(List(1, 2, 3))

// res0: List[Int] = List(2, 2, 3)

In this example the structure of the list doesn’t change. If we start with three elements we end with three
elements. We can abstract this pa�ern in a method called map. If we have a list with elements of type A,
we pass map a funcঞon of type A => B and we get back a list with elements of type B. For example, we can
implement increment using map with the funcঞon x => x + 1.

def increment(list: List[Int]): List[Int] =

list.map(x => x + 1)

increment(List(1, 2, 3))

// res2: List[Int] = List(2, 3, 4)

Each element is transformed by the funcঞon we pass to map, in this case x => x + 1. With map we can
transform the elements, but we cannot change the number of elements in the list.

We find a graphical notaঞon helps with understanding map. If we had some type Circle we can draw a
List[Circle] as a box containing a circle, as shown in fig. 10.5.

Now we can draw an equaঞon for map as in fig. 10.6. If you prefer symbols instead of pictures, the picture is
showing that List[Circle].map(Circle => Triangle) = List[Triangle]. One feature of the graphical
representaঞon is it nicely illustrates that map cannot create a new “box”, which represents the structure of the
list—or more concretely the number of elements and their order.

The graphical drawing of map exactly illustrates what holds at the type level for map. If we prefer we can write
it down symbolically:

List[A].map(A => B) = List[B]

The le[hand side of the equaঞon has the type of the list we map and the funcঞon we use to do the map-
ping. The right hand is the type of the result. We can perform algebra with this representaঞon, subsঞtuঞng in
concrete types from our program.

10.3.2 Transforming Sequences of Numbers

We have also wri�en a lot of methods that transform a natural number to a list. We briefly discussed how we
can represent a natural number as a list. 3 is equivalent to 1 + 1 + 1 + 0, which in turn we could represent
as List(1, 1, 1). So what? Well, it means we could write a lot of the methods that accepts natural numbers
as methods that worked on lists.

For example, instead of

126 CHAPTER 10. SHAPES, SEQUENCES, AND STARS

Figure 10.5: A List[Circle] represenঞng by a circle within a box

map =
Figure 10.6: map shown graphically

10.3. TRANSFORMING SEQUENCES 127

def fill[A](n: Int, a: A): List[A] =

n match {

case 0 => Nil

case n => a :: fill(n-1, a)

}

fill(3, "Hi")

// res3: List[String] = List("Hi", "Hi", "Hi")

we could write

def fill[A](n: List[Int], a: A): List[A] =

n.map(x => a)

fill(List(1, 1, 1), "Hi")

// res5: List[String] = List("Hi", "Hi", "Hi")

The implementaঞon of this version of fill is more convenient to write, but it is much less convenient for the
user to call it with List(1, 1, ,1) than just wriঞng 3.

If we want to work with sequences of numbers we are be�er off using Ranges. We can create these using the
until method of Int.

0 until 10

// res6: Range = Range(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

Ranges have a by method that allows us to change the step between consecuঞve elements of the range:

0 until 10 by 2

// res7: Range = Range(0, 2, 4, 6, 8)

Ranges also have a map method just like List

(0 until 3) map (x => x + 1)

// res8: collection.immutable.IndexedSeq[Int] = Vector(1, 2, 3)

You’ll noঞce the result has type IndexedSeq and is implemented as a Vector—two types we haven’t seen yet.
We can treat an IndexedSeq much like a List, but for simplicity we can convert a Range or an IndexedSeq

to a List using the toList method.

(0 until 7).toList

// res9: List[Int] = List(0, 1, 2, 3, 4, 5, 6)

(0 until 3).map(x => x + 1).toList

// res10: List[Int] = List(1, 2, 3)

With Ranges in our toolbox we can write fill as

def fill[A](n: Int, a: A): List[A] =

(0 until n).toList.map(x => a)

fill(3, "Hi")

// res12: List[String] = List("Hi", "Hi", "Hi")

10.3.3 Ranges over Doubles

If we try to create a Range over Double we get an error.

128 CHAPTER 10. SHAPES, SEQUENCES, AND STARS

0.0 to 10.0 by 1.0

// error: No warnings can be incurred under -Xfatal-warnings.

There are two ways around this. We can use an equivalent Range over Int. In this case we could just write

0 to 10 by 1

We can use the .toInt method to convert a Double to an Int if needed.

Alternaঞvely we can write a Range using BigDecimal.

import scala.math.BigDecimal

BigDecimal(0.0) to 10.0 by 1.0

BigDecimal has methods doubleValue and intValue to get Double and Int values respecঞvely.

BigDecimal(10.0).doubleValue()

// res16: Double = 10.0

BigDecimal(10.0).intValue()

// res17: Int = 10

Exercises

10.3.3.0.1 Ranges, Lists, and map Using our new tools, reimplement the following methods.

Write a method called ones that accepts an Int n and returns a List[Int] with length n and every element
is 1. For example

ones(3)

// res18: List[Int] = List(1, 1, 1)

See the soluঞon

Write a method descending that accepts an natural number n and returns a List[Int] containing the natural
numbers from n to 1 or the empty list if n is zero. For example

descending(0)

// res21: List[Int] = List()

descending(3)

// res22: List[Int] = List(3, 2, 1)

See the soluঞon

Write a method ascending that accepts a natural number n and returns a List[Int] containing the natural
numbers from 1 to n or the empty list if n is zero.

ascending(0)

// res26: List[Int] = List()

ascending(3)

// res27: List[Int] = List(1, 2, 3)

See the soluঞon

Write a method double that accepts a List[Int] and returns a list with each element doubled.

10.4. MY GOD, IT’S FULL OF STARS! 129

double(List(1, 2, 3))

// res31: List[Int] = List(2, 4, 6)

double(List(4, 9, 16))

// res32: List[Int] = List(8, 18, 32)

See the soluঞon

10.3.3.0.2 Polygons, Again! Using our new tools, rewrite the polygon method from the previous secঞon.

See the soluঞon

10.3.3.0.3 Challenge Exercise: BeyondMap Canwe use map to replace all uses of structural recursion? If not,
can you characterise the problems that we can’t implement with map but can implement with general structural
recursion over lists?

See the soluঞon

10.3.4 Tools with Ranges

We’ve seen the until method to construct Ranges, and the by method to change the increment in a Range.
There is one more method that will be useful to know about: to. This constructs a Range like until but the
Range includes the endpoint. Compare

1 until 5

// res37: Range = Range(1, 2, 3, 4)

1 to 5

// res38: Range.Inclusive = Range.Inclusive(1, 2, 3, 4, 5)

In technical terms, the Range constructed with until is a half-open interval, while the range constructed with
to is an open interval.

Exercises

10.3.4.0.1 Using Open Intervals Write a method ascending that accepts a natural number n and returns a
List[Int] containing the natural numbers from 1 to n or the empty list if n is zero. Hint: use to

ascending(0)

// res39: List[Int] = List()

ascending(3)

// res40: List[Int] = List(1, 2, 3)

See the soluঞon

10.4 My God, It’s Full of Stars!

Let’s use our new tools to draw some stars. For the purpose of this exercise let’s assume that a star is a polygon
with p points. However, instead of connecঞng each point to its neighbours, we’ll connect them to the nth point
around the circumference.

For example, fig. 10.7 shows stars with p=11 and n=1 to 5. n=1 produces a regular polygon while values of n
from 2 upwards produce stars with increasingly sharp points:

Write code to draw the diagram above. Start by wriঞng a method to draw a star given p and n:

130 CHAPTER 10. SHAPES, SEQUENCES, AND STARS

Figure 10.7: Stars with p=11 and n=1 to 5

def star(p: Int, n: Int, radius: Double): Image =

???

Hint: use the same technique we used for polygon previously.

See the soluঞon

Using structural recursion and beside write a method allBeside with the signature

def allBeside(images: List[Image]): Image =

???

We’ll use allBeside to create the row of stars. To create the picture we only need to use values of skip from
1 to sides/2 rounded down. For example:

allBeside(

(1 to 5).toList map { skip =>

star(11, skip, 100)

}

)

See the soluঞon

When you’ve finished your row of stars, try construcঞng a larger image from different values of p and n. There
is an example in fig. 10.8. Hint: You will need to create a method allAbove similar to allBeside.

See the soluঞon

10.4. MY GOD, IT’S FULL OF STARS! 131

Figure 10.8: Stars with p=3 to 33 by 2 and n=1 to p/2

132 CHAPTER 10. SHAPES, SEQUENCES, AND STARS

Chapter 11

Animaঞon and Fireworks

This chapter consolidates some of the topics we’ve just learned, namely funcঞons and lists, and introduces
animaঞons as a new way of working with them. This will expand how we think about these programming
concepts, and give us a new creaঞve outlet with which to explore them.

If you run the examples from the SBT console within Doodle they will just work. If not, you will need to
start your code with the following imports to make Doodle available.

import doodle.core._

import doodle.image._

import doodle.image.syntax._

import doodle.image.syntax.core._

import doodle.java2d._

import doodle.reactor._

import doodle.interact.syntax._

11.1 Reactors

We will create animaঞons using a tool called a reactor. A reactor allows us to write an animaঞon in terms of
three things, and one opঞona thing:

• some iniঞal value, such as a Point;
• an update funcঞon that transforms the value into its next value every clock ঞck, such as moving the

Point;
• a rendering funcঞon that turns the value into an Image; and
• an opঞonal condiঞon that determines when the animaঞon stop.

Here’s an example that moves a circle from le[to right, stopping when the the circle gets to the point (300, 0).

val travellingCircle =

Reactor.init(Point(-300, 0))

.onTick(pt => Point(pt.x + 1, pt.y))

.render(pt => Image.circle(10).at(pt))

.stop(pt => pt.x >= 300)

Let’s break this down:

• the value we pass to the init method is the iniঞal value of animaঞon, which is a point at (-300, 0);

133

134 CHAPTER 11. ANIMATION AND FIREWORKS

• the funcঞon passed to onTick is called every clock ঞck (which is mulঞple ঞmes a second though we can
change this if we wish) to move the point along the x-axis;

• the rendermethod is passed a funcঞon that tells us how to convert the data—the Point—into an Image;
and

• the funcঞon passed to stop tells the reactor when to stop.

(We could write the onTick funcঞon as pt => pt + Vec(1,0) if we’re comfortable with vector arithmeঞc.)

This constructs a reactor but it does not draw it. To do this we must call the run method, passing a Frame that
tells the reactor how big to make the window it draws on. Here’s an example:

travellingCircle.run(Frame.size(600, 600))

This generates the animaঞon shown in TODO: render animaࢼon

Here’s an another example that moves a circle in a circular orbit. This ঞme the animaঞon has no stopping
condiঞon, so it conঞnues forever.

val orbitingCircle =

Reactor.init(Point(0, 300))

.onTick(pt => pt.rotate(2.degrees))

.render(pt => Image.circle(10).at(pt))

We run this reactor in the same way.

orbitingCircle.run(Frame.size(600, 600))

This generates the animaঞon shown in TODO: render animaࢼon

11.1.0.1 Exercise: Rose Curve

Make an animaঞon where an image moves in a rose curve (we saw the rose curve in an earlier chapter). Be
as creaঞve as you wish. You might find it fun to change the background of the Frame on which you draw the
animaঞon; a dark background is o[enmore effecঞve than a light one. You can do this by calling the background
method on Frame. For example, here is how you’d create a 600 by 600 frame with a dark blue background.

Frame.size(600, 600).background(Color.midnightBlue)

Remember you will need to import doodle.reactor._ to make the reactor library available.

11.2 Easing Funcঞons

Take a look at the following animaঞon.

val bubble =

Reactor.linearRamp(0, 200)

.render(r => Image.circle(r))

// bubble: Reactor[Double] = Reactor(

// 0.0,

// doodle.reactor.Reactor$$$Lambda$9550/2044289989@6ee42a4f,

// doodle.reactor.Reactor$$$Lambda$9578/901681921@4cc70267,

// 100 milliseconds,

// <function1>,

11.2. EASING FUNCTIONS 135

// doodle.reactor.Reactor$$$Lambda$9579/820706882@19e61b4c

//)

136 CHAPTER 11. ANIMATION AND FIREWORKS

Chapter 12

Turtle Algebra and Algebraic Data Types

In this chapter we explore a new way of creaঞng paths—turtle graphics—and learn some new ways of manipu-
laঞng lists and funcঞons.

If you run the examples from the SBT console within Doodle they will just work. If not, you will need to
start your code with the following imports to make Doodle available.

import doodle.core._

import doodle.image._

import doodle.image.syntax._

import doodle.image.syntax.core._

import doodle.java2d._

12.1 Turtle Graphics

So far our paths have used an absolute coordinate system. For example, if we wanted to draw a square we’d
use code like

import doodle.core.PathElement._

val path =

Image.openPath(

List(moveTo(10,10), lineTo(-10,10), lineTo(-10,-10), lineTo(10, -10), lineTo(10, 10))

)

It’s o[en easier to define paths in terms of relaঞve coordinates, specifying how far we move forward or turn
relaঞve to our current locaঞon. This is how a turtle graphics system works. Here’s an example.

import doodle.turtle._

import doodle.turtle.Instruction._

// Create a list of instructions for the turtle

val instructions: List[Instruction] =

List(forward(10), turn(90.degrees),

forward(10), turn(90.degrees),

forward(10), turn(90.degrees),

forward(10))

137

138 CHAPTER 12. TURTLE ALGEBRA AND ALGEBRAIC DATA TYPES

Figure 12.1: A plant generated using turtle graphics and an L-system.

// Ask the turtle to draw these instructions, creating an Image

val image: Image = Turtle.draw(instructions)

So where’s the turtle in all this? This model was developed in the 60s by Seymour Papert in the programming
language Logo. The original Logo could control a robot that drew on paper with a pen. This robot was called a
turtle, due to its rounded shape, and way of programming this robot became known as turtle graphics.

Using turtle graphics and another concept, known as an L-system, we can create images that mimic nature such
as the plant in fig. 12.1.

12.2 Controlling the Turtle

Let’s look over the turtle graphics API, and use it to draw a few different images.

12.2.1 Instrucঞons

We control the turtle by giving it instrucঞons. These instrucঞons are defined as methods on the object
doodle.turtle.Instruction (similarly to the methods on doodle.core.Image that create images).

We can import the methods and then create instrucঞons.

12.2. CONTROLLING THE TURTLE 139

Figure 12.2: A square created via the turtle graphics system.

import doodle.turtle._

import doodle.turtle.Instruction._

forward(10)

// res0: Instruction = Forward(10.0)

turn(5.degrees)

// res1: Instruction = Turn(Angle(0.08726646259971647))

This doesn’t do anything useful unless we assemble these commands into an image. To do so, we create a list
of instrucঞons and then ask the turtle (doodle.turtle.Turtle to be exact) to draw them to an Image.

val instructions =

List(forward(10), turn(90.degrees),

forward(10), turn(90.degrees),

forward(10), turn(90.degrees),

forward(10))

val path = Turtle.draw(instructions)

This creates a path—an Image—which we can then draw in the usual way. This gives the output shown in
fig. 12.2. This is not a very exciঞng image, but we can change color, line width, and so on to create more
interesঞng results.

The complete list of turtle instrucঞons in given in tbl. 12.1

Table 12.1: The instrucঞons understood by the turtle.

Instrucঞon Descripঞon Example

forward(distance) Move forward the given distance,
specified as a Double.

forward(100.0)

140 CHAPTER 12. TURTLE ALGEBRA AND ALGEBRAIC DATA TYPES

Instrucঞon Descripঞon Example

turn(angle) Turn the given angle (an Angle) from
the current heading.

turn(10.degrees)

branch(instruction,

...)

Save the current posiঞon and heading,
draw the given instructions , and
then return to the saved posiঞon to
draw the rest of the instrucঞons.

branch(turn(10.degrees),

forward(10))

noop Do nothing! noop

Exercises

Polygons

In the previous chapter we wrote a method to create a polygon. Reimplement this method using turtle graphics
instead. The method header should be something like

def polygon(sides: Int, sideLength: Double): Image =

???

You’ll have to do a bit of geometry to work out the correct turn angle, but as that’s half the fun we won’t spoil
it for you.

See the soluঞon

12.2.1.1 The Square Spiral

The square spiral is shown in fig. 12.3. Write a method to create square spirals using turtle graphics.

This task requires a bit more design work than we usually ask of you. You’ll have to work out how the square
spiral is constructed (hint: it starts at the center) and then create a method to draw one.

See the soluঞon

Turtles vs Polar Coordinates

We can create polygons in polar coordinates using a Range and map as shown below.

import doodle.core.Point._

def polygon(sides: Int, size: Int): Image = {

val rotation = Angle.one / sides

val elts =

(1 to sides).toList.map { i =>

PathElement.lineTo(polar(size, rotation * i))

}

Image.closedPath(PathElement.moveTo(polar(size, Angle.zero)) :: elts)

}

We cannot so easily write the same method to generate turtle instrucঞons using a Range and map. Why is this?
What abstracঞon are we missing?

See the soluঞon

12.2. CONTROLLING THE TURTLE 141

Figure 12.3: The square spiral!

142 CHAPTER 12. TURTLE ALGEBRA AND ALGEBRAIC DATA TYPES

12.3 Branching Structures

In addiঞon to the standard imports given at the start of the chapter, in this secঞon we’re assuming the
following:

import doodle.turtle._

import doodle.turtle.Instruction._

Using the branch turtle instrucঞon we can explore some shapes that are difficult to create without it. The
branch instrucঞon takes a List[Instruction]. It saves the current state of the turtle (it’s locaঞon and head-
ing), draws the given instrucঞons, and returns the turtle to the saved state.

Consider the code below, which creates the image in fig. 12.4. This is easy to draw with a branching turtle, but
quite involved to create with just a path.

val y = Turtle.draw(List(

forward(100),

branch(turn(45.degrees), forward(100)),

branch(turn(-45.degrees), forward(100)))

)

// y: Image = OpenPath(

// List(

// MoveTo(Cartesian(0.0, 0.0)),

// MoveTo(Cartesian(0.0, 0.0)),

// LineTo(Cartesian(100.0, 0.0)),

// LineTo(Cartesian(170.71067811865476, 70.71067811865474)),

// MoveTo(Cartesian(100.0, 0.0)),

// LineTo(Cartesian(170.71067811865476, -70.71067811865474)),

// MoveTo(Cartesian(100.0, 0.0))

//)

//)

Using branching we can model some forms of biological growth, producing, for example, images of plants as in
fig. 12.1. One parঞcular model is known as an L-system. An L-system has consists of two parts:

• an iniঞal seed to start the growth; and
• rewrite rules, which specify how the growth occurs.

A specific example of this process is shown in fig. 12.5. The figure on the le[hand side is the seed. The rewrite
rules are:

• each straight line doubles in size; and
• a bud (the diamond at the end of a line) grows into two branches that end with buds.

Concretely, we can write these rules as a transformaঞon on Instruction assuming that we use NoOp to rep-
resent a bud.

val stepSize = 10

// stepSize: Int = 10

def rule(i: Instruction): List[Instruction] =

i match {

case Forward(_) => List(forward(stepSize), forward(stepSize))

case NoOp =>

List(branch(turn(45.degrees), forward(stepSize), noop),

branch(turn(-45.degrees), forward(stepSize), noop))

12.3. BRANCHING STRUCTURES 143

Figure 12.4: An image that is easy to createwith a branching turtle, and comparaঞvely difficult to createwithout.

Figure 12.5: Modelling the growth of a plant using rewrite rules.

144 CHAPTER 12. TURTLE ALGEBRA AND ALGEBRAIC DATA TYPES

flatMap =

Figure 12.6: The type equaঞon for flatMap illustrated graphically.

case other => List(other)

}

Note how we used pa�ern matching on Instruction, like we have on the other algebraic data types—natural
numbers and List—we’ve seen so far. By imporঞng doodle.turtle.Instruction._ we can access all the
pa�erns for Instruction, which are

• Forward(distance), where distance is a Double;
• Turn(angle), where angle is an Angle;
• NoOp; and
• Branch(instructions), where instructions is a List[Instruction].

As a funcঞon, rule has type Instruction => List[Instruction], as we’re potenঞally transforming each
instrucঞon into several instrucঞons (as we do in the case of Forward). Now how can we actually apply this rule
to a List[Instruction] to create a List[Instruction] (for example, applying it to List[noop])? Can we
use map?

See the soluঞon

There is a method flatten on List, which will convert a List[List[A]] to List[A]. We could use a com-
binaঞon of map and flatten but we have a be�er soluঞon. This pa�ern comes up enough—and in different
contexts which we’ll see later—that there is a method just to handle it. The method is called flatMap.

The type equaঞon for flatMap is

List[A] flatMap (A => List[B]) = List[B]

and this is illustrated graphically in fig. 12.6. We can see that flatMap has the right type to combine rulewith
List[Instruction] to create a rewri�en List[Instruction].

When discussing mapwe said that it doesn’t allow us to change the number of elements in the List. Graphically,
we can’t create a new “box” using map. With flatMap we can change the box, in the case lists meaning we can
change the number of elements in the list.

Exercises

Double

Using flatMap, write a method double that transforms a List to a List where every element appears twice.
For example

double(List(1, 2, 3))

// res0: List[Int] = List(1, 1, 2, 2, 3, 3)

double(List("do", "ray", "me"))

// res1: List[String] = List("do", "do", "ray", "ray", "me", "me")

12.3. BRANCHING STRUCTURES 145

See the soluঞon

Or Nothing

Using flatMap, write a method nothing that transforms a List to the empty List. For example

nothing(List(1, 2, 3))

// res3: List[Int] = List()

nothing(List("do", "ray", "me"))

// res4: List[String] = List()

See the soluঞon

Rewriঞng the Rules

Write a method rewrite with signature

def rewrite(instructions: List[Instruction],

rule: Instruction => List[Instruction]): List[Instruction] =

???

This method should apply rule to rewrite every instrucঞon in instructions, except for branches which you’ll
need to handle specially. If you encounter a branch you should rewrite all the instrucঞons inside the branch
but leave the branch alone.

Note: You’ll need to pass a List[Instruction] to branch, while branch itself accepts zero or more instruc-
ঞons (so-called varargs). To convert the List[Instruction] into a form that branch will accept, follow the
parameter with :_* like so

val instructions = List(turn(45.degrees), forward(10))

// instructions: List[Instruction] = List(

// Turn(Angle(0.7853981633974483)),

// Forward(10.0)

//)

branch(instructions:_*)

// res8: Branch = Branch(List(Turn(Angle(0.7853981633974483)), Forward(10.0)))

See the soluঞon

Your Own L-System

We’re now ready to create a complete L-system. Using rewrite from above, create a method iterate with
signature

def iterate(steps: Int,

seed: List[Instruction],

rule: Instruction => List[Instruction]): List[Instruction] =

???

This should recursively apply rule to seed for steps iteraঞons.

See the soluঞon

146 CHAPTER 12. TURTLE ALGEBRA AND ALGEBRAIC DATA TYPES

Figure 12.7: Five iteraঞons of the simple branching L-system.

Figure 12.8: Five iteraঞons of the Koch curve, a fractal that is simple to create with an L-System.

Plants and Other Creaঞons

Create the pictures shown in fig. 12.7 and fig. ?? using your L-system implementaঞon.

12.4 Exercises

12.4.1 Flat Polygon

Using the Turtle methods, Range, and flatMap, rewrite your method to create a polygon. The signature of
polygon is

def polygon(sides: Int, sideLength: Double): Image =

???

See the soluঞon

12.4. EXERCISES 147

12.4.2 Flat Spiral

Using the Turtle methods, Range, and flatMap, rewrite your method to create the square spiral. The signature
of squareSpiral is

def squareSpiral(steps: Int, distance: Double, angle: Angle, increment: Double): Image =

???

See the soluঞon

12.4.3 L-System Art

In this exercise we want you to use your creaঞvity to construct a picture of a natural object using your L-system
implementaঞon. You’ve seen many examples already that you can use an inspriaঞon.

148 CHAPTER 12. TURTLE ALGEBRA AND ALGEBRAIC DATA TYPES

Chapter 13

Composiঞon of Generaঞve Art

In this chapter we’ll explore techniques from generaঞve art, which will in turn allow us to explore key concepts
for funcঞonal programming. We’ll see:

• uses for map and flatMap that go beyondmanipulaঞng collecঞons of data thatwe’ve seen in the previous
chapters;

• how we can handle side effects without breaking subsঞtuঞon; and
• some interesঞng, and possibly beauঞful, images that combine elements of structure and randomness.

If you run the examples from the SBT console within Doodle they will just work. If not, you will need to start
your code with the following imports to make Doodle available.

import doodle.core._

import doodle.image._

import doodle.image.syntax._

import doodle.image.syntax.core._

import doodle.java2d._

13.1 Generaঞve Art

Generaঞve art means art where some part of the composiঞon is determined by an autonomous process. Con-
cretely, for us this will mean adding an element of randomness.

Let’s take a really simple example. We’ve learned previously how to create concentric circles.

def concentricCircles(n: Int): Image =

n match {

case 0 => Image.circle(10)

case n => concentricCircles(n-1).on(Image.circle(n * 10))

}

(We now know we could write this using a Range and a method like allOn.)

We also learned how we could make coloured circles, using a second parameter.

def concentricCircles(n: Int, color: Color): Image =

n match {

case 0 => Image.circle(10).fillColor(color)

case n => concentricCircles(n-1, color.spin(15.degrees)).on(Image.circle(n * 10).fillColor(color

149

150 CHAPTER 13. COMPOSITION OF GENERATIVE ART

Figure 13.1: An example image generated using the techniques in this chapter

13.2. RANDOMNESS WITHOUT EFFECT 151

))

}

Pictures constructed in this way are nice, but they are a bit boring in their regularity. What if we wanted to
make a random alteraঞon to the hue of the color at each step?

Scala provides some methods that produce random numbers. One such method is math.random. Each ঞme we
call it we get a different Double between 0.0 and 1.0¹.

math.random

// res0: Double = 0.3841409073635985

math.random

// res1: Double = 0.858657941107252

Given math.random we could produce a method that returns a random Angle like so.

def randomAngle: Angle =

math.random.turns

randomAngle

// res2: Angle = Angle(1.0598850824318808)

randomAngle

// res3: Angle = Angle(5.741077450831025)

Why might we not want to do this? What principle does this break?

See the soluঞon

What should we do? Suffer the slings and arrows of outrageous computaঞonal models, or take arms against a
sea of side-effects, and by opposing end them! There’s really only one choice.

13.2 Randomness without Effect

The soluঞon to our problem is to separate describing howwe’ll use randomnumbers from the process of actually
generaঞng them. This sounds complicated, but it’s exactly what we’ve be doing with Image throughout this
book. We

• describe an Image using paths and methods like beside, above, and on; and
• we only draw an Image when we call draw.

We do the same thing with Doodle’s Random type. To access this code we first need to import the
doodle.random package.

import doodle.random._

Now we can create values that describe creaঞng a random number

¹These numbers are not truly random. The output is determined by a value known as the seed. If we know the seed we can
perfectly predict all the result we’ll get from calling math.random. However, going the other way—that is, predicঞng the seed given
a sequence of outputs—is very difficult. The numbers so generated are called pseudo-random numbers, because they are not truly
random but nonetheless are very difficult to predict.

152 CHAPTER 13. COMPOSITION OF GENERATIVE ART

val randomDouble = Random.double

// randomDouble: Random[Double] = Suspend(RDouble)

No random numbers are actually created unঞl we call the run method.

randomDouble.run

// res0: Double = 0.6293890040202628

The type Random[Double] indicates we have something that will produce a random Double when we run it.
Just like with Image and draw, subsঞtuঞon holds with Random up unঞl the point we call run.

Table tbl. 13.1 shows some of the ways to construct Random values.

Table 13.1: Some of the methods to create Random values.

Method Descripঞon Example

Random.always(value) Creates a Random that always
produces the given value.

Random.always(10)

Random.double Creates a Random that generates a
Double uniformly distributed
between 0.0 and 1.0.

Random.double

Random.int Creates a Random that generates
an Int uniformly distributed
across the enঞre range.

Random.int

Random.natural(limit) Creates a Random that generates a
Int uniformly distributed in the
range greater than or equal to 0
and less than 1.

Random.natural(10)

Random.oneOf(value, ...) Creates a Random that generates
one of the given values with equal
chance.

Random.oneOf("A", "B", "C")

13.2.1 Composing Random

Now we’ve seen how to create a Random, how do we compose them into more interesঞng programs? For
example, how could we turn a random Double into a random Angle? It might be tempঞng to call run every
ঞme we want to manipulate a random result, but this will break subsঞtuঞon and is exactly what we’re trying to
avoid.

Remember when we talked about map in the previous chapter we said it transforms the elements but keeps
the structure (number of elements) in the List. The same analogy applies to the map method on Random. It
lets us transform the element of a Random—the value it produces when it is run—but doesn’t let us change the
structure. Here the “structure” means introducing more randomness, or making a random choice.

We can create a random value and apply a determinisࢼc transformaঞon to it using map, but we can’t create a
random value and them use that value as input to a process that creates another random value.

Here’s how we can create a random angle.

val randomAngle: Random[Angle] =

Random.double.map(x => x.turns)

When we run RandomAngle we can generate randomly created Angle

13.3. COMBINING RANDOM VALUES 153

randomAngle.run

// res1: Angle = Angle(4.201103170459831)

randomAngle.run

// res2: Angle = Angle(1.1433721813030546)

Exercises

Random Colors

Given randomAngle above, create a method that accepts saturaঞon and lightness and generates a random
color. Your method should have the signature

def randomColor(s: Normalized, l: Normalized): Random[Color] =

???

This is a determinisঞc transformaঞon of the output of randomAngle, so we can implement it using map.

def randomColor(s: Double, l: Double): Random[Color] =

randomAngle.map(hue => Color.hsl(hue, s, l))

Random Circles

Write a method that accepts a radius and a Random[Color], and produces a circle of the given radius and filled
with the given random color. It should have the signature

def randomCircle(r: Double, color: Random[Color]): Random[Image] =

???

Once again this is a determinisঞc transformaঞon of the random color, so we can use map.

def randomCircle(r: Double, color: Random[Color]): Random[Image] =

color.map(fill => Image.circle(r).fillColor(fill))

13.3 Combining Random Values

In addiঞon to the standard imports given at the start of the chapter, in this secঞon we’re assuming the
following:

import doodle.random._

So far we’ve seen how to represent funcঞons generaঞng random values using the Random type, and how to
make determinisঞc transformaঞons of a random value using map. In this secঞon we’ll see how we can make a
random (or stochasঞc, if you prefer fancier words) transformaঞon of a random value using flatMap.

To moঞvate the problem lets try wriঞng randomConcentricCircles, which will generate concentric circles
with randomly chosen hue using the uঞlity methods we developed in the previous secঞon.

We start with the code to create concentric circles with determinisঞc colors and the uঞliঞes we developed
previously.

154 CHAPTER 13. COMPOSITION OF GENERATIVE ART

def concentricCircles(count: Int, size: Int, color: Color): Image =

count match {

case 0 => Image.empty

case n =>

Image.circle(size).fillColor(color).on(concentricCircles(n-1, size + 5, color.spin(15.degrees)

))

}

val randomAngle: Random[Angle] =

Random.double.map(x => x.turns)

def randomColor(s: Double, l: Double): Random[Color] =

randomAngle map (hue => Color.hsl(hue, s, l))

def randomCircle(r: Double, color: Random[Color]): Random[Image] =

color.map(fill => Image.circle(r).fillColor(fill))

Let’s create a method skeleton for randomConcentricCircles.

def randomConcentricCircles(count: Int, size: Int): Random[Image] =

???

The important change here is we return a Random[Image] not an Image. We know this is a structural recursion
over the natural numbers so we can fill out the body a bit.

def randomConcentricCircles(count: Int, size: Int): Random[Image] =

count match {

case 0 => ???

case n => ???

}

The base case will be Random.always(Image.empty), the direct of equivalent of Image.empty in the deter-
minisঞc case.

def randomConcentricCircles(count: Int, size: Int): Random[Image] =

count match {

case 0 => Random.always(Image.empty)

case n => ???

}

What about the recursive case? We could try using

val randomPastel = randomColor(0.7, 0.7)

def randomConcentricCircles(count: Int, size: Int): Random[Image] =

count match {

case 0 => Image.empty

case n =>

randomCircle(size, randomPastel).on(randomConcentricCircles(n-1, size + 5))

}

// error: type mismatch;

// found : doodle.image.Image

// required: doodle.random.Random[doodle.image.Image]

// (which expands to) cats.free.Free[doodle.random.RandomOp,doodle.image.Image]

// case 0 => Random.always(Image.empty)

// ^^^^^^^^^^^

// error: value on is not a member of doodle.random.Random[doodle.image.Image]

13.3. COMBINING RANDOM VALUES 155

// randomCircle(size, randomPastel).flatMap{ circle =>

// ^

but this does not compile. Both randomConcentricCircles and randomCircle evaluate to Random[Image].
There is no method on on Random[Image] so this code doesn’t work.

Since this is a transformaঞon of two Random[Image] values, it seems like we need some kind of method that
allows us to transform two Random[Image], not just one like we can do with map.
We might call this method map2 and we could imagine wriঞng code like

randomCircle(size, randomPastel).map2(randomConcentricCircles(n-1, size + 5)){

(circle, circles) => circle on circles

}

Presumably we’d also need map3, map4, and so on. Instead of these special cases we can use flatMap and map
together.

randomCircle(size, randomPastel) flatMap { circle =>

randomConcentricCircles(n-1, size + 5) map { circles =>

circle on circles

}

}

The complete code becomes

def randomConcentricCircles(count: Int, size: Int): Random[Image] =

count match {

case 0 => Random.always(Image.empty)

case n =>

randomCircle(size, randomPastel).flatMap{ circle =>

randomConcentricCircles(n-1, size + 5).map{ circles =>

circle.on(circles)

}

}

}

Example output is shown in fig. 13.2.

Let’s now look closer at this use of flatMap and map to understand how this works.

13.3.1 Type Algebra

The simplest way, in my opinion, to understandwhy this codeworks is to look at the types. The code in quesঞon
is

randomCircle(size, randomPastel) flatMap { circle =>

randomConcentricCircles(n-1, size + 5) map { circles =>

circle on circles

}

}

Starঞng from the inside, we have

156 CHAPTER 13. COMPOSITION OF GENERATIVE ART

Figure 13.2: The output of one run of randomConcentricCircles(10, 10).run.draw

{ circles =>

circle on circles

}

which is a funcঞon with type

Image => Image

Wrapping this we have

randomConcentricCircles(n-1, size + 5) map { circles =>

circle on circles

}

We known randomConcentricCircles(n-1, size + 5) has type Random[Image]. Subsঞtuঞng in the
Image => Image type we worked out above we get

Random[Image] map (Image => Image)

Now we can deal with the enঞre expression

randomCircle(size, randomPastel) flatMap { circle =>

randomConcentricCircles(n-1, size + 5) map { circles =>

circle on circles

}

}

randomCircle(size, randomPastel) has type Random[Image]. Performing subsঞtuঞon again gets us a
type equaঞon for the enঞre expression.

13.3. COMBINING RANDOM VALUES 157

Random[Inage] flatMap (Random[Image] map (Image => Image))

Now we can apply the type equaঞons for map and flatMap that we saw earlier:

F[A] map (A => B) = F[B]

F[A] flatMap (A => F[B]) = F[B]

Working again from the inside out, we first use the type equaঞon for map which simplifies the type expression
to

Random[Inage] flatMap (Random[Image])

Now we can apply the equaঞon for flatMap yielding just

Random[Image]

This tells us the result has the type we want. Noঞce that we’ve been performing subsঞtuঞon at the type level—
the same technique we usually use at the value level.

Exercises

Don’t forget to import doodle.random._ when you a�empt these exercises.

Randomness and Randomness

What is the difference between the output of programOne and programTwo below? Why do they differ?

def randomCircle(r: Double, color: Random[Color]): Random[Image] =

color.map(fill => Image.circle(r).fillColor(fill))

def randomConcentricCircles(count: Int, size: Int): Random[Image] =

count match {

case 0 => Random.always(Image.empty)

case n =>

randomCircle(size, randomPastel).flatMap{ circle =>

randomConcentricCircles(n-1, size + 5).map{ circles =>

circle.on(circles)

}

}

}

val circles = randomConcentricCircles(5, 10)

val programOne =

circles.flatMap{ c1 =>

circles.flatMap{ c2 =>

circles.map{ c3 =>

c1.beside(c2).beside(c3)

}

}

}

val programTwo =

circles map { c => c beside c beside c }

See the soluঞon

158 CHAPTER 13. COMPOSITION OF GENERATIVE ART

Figure 13.3: Boxes filled with random colors.

Colored Boxes

Let’s return to a problem from the beginning of the book: drawing colored boxes. This ঞme we’re going to make
the gradient a li�le more interesঞng, by making each color randomly chosen.

Recall the basic structural recursion for making a row of boxes

def rowOfBoxes(count: Int): Image =

count match {

case 0 => Image.rectangle(20, 20)

case n => Image.rectangle(20, 20).beside(rowOfBoxes(n-1))

}

Let’s alter this, like with did with concentric circles, to have each box filled with a random color. Hint: you might
find it useful to reuse some of the uঞliঞes we created for randomConcentricCircles. Example output is
shown in fig. 13.3.

See the soluঞon

13.4 Exploring Random

So far we’ve seen only the very basics of using Random. In this secঞon we’ll see more of its features, and use
these features to create more interesঞng pictures.

In addiঞon to the standard imports given at the start of the chapter, in this secঞon we’re assuming the
following:

import doodle.random._

13.4.1 Normal Distribuঞons

O[en when using random numbers in generaঞve art we will choose specific distribuঞons for the shape they
provide. For example, fig. 13.4 shows a thousand randompoints generated using a uniform, normal (or Gaussian)
distribuঞon, and a squared normal distribuঞon respecঞvely.

As you can see, the normal distribuঞon tends to generate more points nearer the center than the uniform
distribuঞon.

Doodle provides two methods to create normally distributed numbers, from which we can create many other
distribuঞons. A normal distribuঞon is defined by two parameters, it’s mean, which specifies the center of the
distribuঞon, and it’s standard deviaࢼon, which determines the spread of the distribuঞon. The corresponding
methods in Doodle are

13.4. EXPLORING RANDOM 159

Figure 13.4: Points distributed according to uniform, normal, and squared normal distribuঞons

• Random.normal, which generates a Double from a normal distribuঞon with mean 0 and standard devi-
aঞon 1.0; and

• Random.normal(mean, stdDev), which generates a Double from a normal distribuঞon with the spec-
ified mean and standard deviaঞon.

13.4.2 Structured Randomness

We’ve gone from very structured to very random pictures. It would be nice to find a middle ground that incor-
porates elements of randomness and structure. We can use flatMap to do this—with flatMapwe can use one
randomly generated value to create another Random value. This creates a dependency between values—the
prior random value has an influence on the next one we generate.

For example, we can create a method that given a color randomly perturbs it.

def nextColor(color: Color): Random[Color] = {

val spin = Random.normal(15.0, 10.0)

spin.map{ s => color.spin(s.degrees) }

}

Using nextColor we can create a series of boxes with a gradient that is partly random and partly structured:
the next color in the gradient is a random perturbaঞon of the previous one.

def coloredRectangle(color: Color, size: Int): Image =

Image.rectangle(size, size)

.strokeWidth(5.0)

.strokeColor(color.spin(30.degrees))

.fillColor(color)

def randomGradientBoxes(count: Int, color: Color): Random[Image] =

count match {

case 0 => Random.always(Image.empty)

case n =>

val box = coloredRectangle(color, 20)

val boxes = nextColor(color).flatMap{ c => randomGradientBoxes(n-1, c) }

boxes.map{ b => box beside b }

}

Example output is shown in fig. 13.5.

160 CHAPTER 13. COMPOSITION OF GENERATIVE ART

Figure 13.5: Boxes filled with gradient that is partly random.

Figure 13.6: A simulaঞon of a smoky fire, generaঞng using a parঞcle system.

Exercises

Parঞcle Systems

A parࢼcle system is a technique used in computer graphics to create large numbers of “parঞcles” that move
according to simple rules. In fig. 13.6 there is an example of a parঞcle system simulaঞng a fire and smoke. For
the mathemaঞcally inclined, a parঞcle system is basically a stochasࢼc process or random walk.

In this exercise we’ll build a parঞcle system, which will give you a flexible system to experiment with these ideas.
We’ll start with a fixed system and then abstract it to create reusable components.

Here’s a sketch of how a parঞcle system works. To draw a single parঞcle we

• choose a starঞng posiঞon;
• decide how many ঞme steps we want to move the parঞcle system for; and
• at each ঞmestep the new posiঞon of the parঞcle is equal to the posiঞon at the previous ঞmestep plus

some random noise (and potenঞally some non-random (determinisঞc) movement such as velocity or
acceleraঞon).

A parঞcle system is just a collecঞon of a number of parঞcles—20 parঞcles over 20 steps in fig. 13.6.

In the above descripঞon we’ve broken down the components of a partcile system. Now we just need to imple-
ment them.

The starঞng posiঞon can be any Random[Point]. Create one now.

See the soluঞon

Let’s implement a method step that will take a single step in parঞcle system. It will have skeleton

def step(current: Point): Random[Point] =

???

We need to decide how we will modify the current point to create the next point. I suggest adding some
random noise, and a constant “dri[” that will ensure the points tend to move in a parঞcular direcঞon. For

13.4. EXPLORING RANDOM 161

example, we could increment the x coordinate by 10, which will cause a dri[towards the right of the screen,
plus some normally distributed noise to the x and y coordinates.

See the soluঞon

Now that we can step a parঞcle we need to connect a sequence of steps to get a walk. There is one wrinkle
here: we want to draw the intermediate stages so we’re going to define two methods:

• a method that transforms a Point to an Image; and
• a method walk that produces a Random[Image]

The skeletons are

def render(point: Point): Image =

???

def walk(steps: Int): Random[Image] =

???

The implementaঞon of render can be whatever you fancy. In the implementaঞon of walk, you will have to
call step to get the next Point, and then call render to convert the point to something that can be draw. You
will also want to have an accumulator of the Image so far. Hint: you might find it useful to define an auxiliary
parameter for walk.

See the soluঞon

Now you should be able to call walk and render the result.

The final step is create a number of parঞcles and render them all. Create a method particleSystem with
skeleton

def particleSystem(particles: Int, steps: Int): Random[Image] =

???

that does just this.

See the soluঞon

Now render the result, and tweak it ঞll you have something you’re happy with. I’m not parঞculary happy with
the result of my code. I think the stars are too bunched up, and the colors are not very interesঞng. To make a
more interesঞng result I’d consider adding more noise and changing the start color and perhaps compressing
the range of colors.

Random Abstracঞons

The implementaঞon of particleSystem above hard-codes in a parঞcular choice of parঞcle system. To make
it easier to experiment with we might like to abstract over the parঞcular choice of walk and start. How do
you think we could do this?

See the soluঞon

Implement this.

See the soluঞon

This code doesn’t make me happy. Most of the parameters to particleSystem are only needed to pass on
to walk. These parameters don’t change is any way within the structural recursion that makes up the body of
particleSystem. At this point we can apply our principle of subsঞtuঞon—we can replace a method call with
the value it evaluates to—to remove walk and associated parameters from particleSystem.

162 CHAPTER 13. COMPOSITION OF GENERATIVE ART

def particleSystem(particles: Int, walk: Random[Image]): Random[Image] = {

particles match {

case 0 => Random.always(Image.empty)

case n => walk.flatMap{ img1 =>

particleSystem(n-1, walk) map { img2 =>

img1.on(img2)

}

}

}

}

If you’re used to programming in imperaঞve languages thismay seemmind-bending. Remember thatwe’ve gone
to some lengths to ensure that working with random numbers obeys subsঞtuঞon, up to the point that run is
called. The walk method doesn’t actually create a random walk. It instead describes how to create a random
walk when that code is actually run. This separaঞon between descripঞon and acঞon means that subsঞtuঞon
can be used. The descripঞon of how to perform a random walk can be used to create many different random
walks.

13.5 For Comprehensions

In addiঞon to the standard imports given at the start of the chapter, in this secঞon we’re assuming the
following:

import doodle.random._

Scala provides some special syntax, called a for comprehension, that makes it simpler to write long sequences of
flatMap and map.

For example, the code for randomConcentricCircles has a call to flatMap and map.

def randomConcentricCircles(count: Int, size: Int): Random[Image] =

count match {

case 0 => Random.always(Image.empty)

case n =>

randomCircle(size, randomPastel).flatMap{ circle =>

randomConcentricCircles(n-1, size + 5).map{ circles =>

circle.on(circles)

}

}

}

This can be replaced with a for comprehension.

def randomConcentricCircles(count: Int, size: Int): Random[Image] =

count match {

case 0 => Random.always(Image.empty)

case n =>

for {

circle <- randomCircle(size, randomPastel)

circles <- randomConcentricCircles(n-1, size + 5)

} yield circle.on(circles)

}

The for comprehension is o[en easier to read than direct use of flatMap and map.

A general for comprehension

13.6. EXERCISES 163

for {

x <- a

y <- b

z <- c

} yield e

translates to:

a.flatMap(x => b.flatMap(y => c.map(z => e)))

Which is to say that every <-, except the last, turns into a flatMap, and the last <- becomes a map.

For comprehensions are translated by the compiler into uses of flatMap and map. There is no magic going on.
It is just a different way of wriঞng code that would use flatMap and map that avoids excessive nesঞng.

Note that the for comprehension syntax is more flexible than what we have presented here. For example, you
can drop the yield keyword from a for comprehension and the code will sঞll compile. It just won’t return a
result. We’re not going to use any of these extensions in Creaঞve Scala, however.

13.6 Exercises

13.6.1 Sca�er Plots

In this exercise we’ll implement sca�er plots as in fig. 13.4. Experiment with different distribuঞons (trying
creaঞng your own distribuঞons by transforming ones defined on Random).

There are three main components of a sca�er plot:

• we need to generate the points we’ll plot;
• we need to overlay the images on top of each other in the same coordinate system to create the plot;

and
• we need to convert a point to an image we can render.

We tackle each task in turn.

Start by wriঞng a method makePoint that will accept a Random[Double] for the x and y coordinates of a point
and return a Random[Point]. It should have the following skeleton:

def makePoint(x: Random[Double], y: Random[Double]): Random[Point] =

???

Use a for comprehension in your implementaঞon.

See the soluঞon

Now create, say, a thousand random points using the techniques we learned in the previous chapter on lists
and a random distribuঞon of your choice. You should end up with a List[Random[Point]].

See the soluঞon

Let’s now transform our List[Random[Point]] into List[Random[Image]]. Do this in two steps: first
write a method to convert a Point to an Image, then write code to convert List[Random[Point]] to
List[Random[Image]].

See the soluঞon

164 CHAPTER 13. COMPOSITION OF GENERATIVE ART

Now create a method that transforms a List[Random[Image]] to a Random[Image] by placing all the points
on each other. This is the equivalent of the allOn method we’ve developed previously, but it now works with
data wrapped in Random.

See the soluঞon

Now put it all together to make a sca�er plot.

See the soluঞon

13.6.2 Parametric Noise

In this exercise we will combine parametric equaঞons, from a previous chapter, with randomness.

Let’s start by making a method perturb that adds random noise to a Point. The method should have skeleton

def perturb(point: Point): Random[Point] =

???

Choose whatever noise funcঞon you like.

See the soluঞon

Now create a parametric funcঞon, like we did in a previous chapter. You could use the rose funcঞon (the
funcঞon we explored previously) or you could create one of your own devising. Here’s the definiঞon of rose.

def rose(k: Int): Angle => Point =

(angle: Angle) => {

Point.cartesian((angle * k).cos * angle.cos, (angle * k).cos * angle.sin)

}

Wecan combine our parametric funcঞon andperturb to create amethodwith typeAngle => Random[Point].
You can write this easily using the andThen method on funcঞons, or you can write this out the long way.
Here’s a quick example of andThen showing how we write the fourth power in terms of the square.

val square = (x: Double) => x * x

val quartic = square andThen square

See the soluঞon

Now using allOn create a picture that combines randomnes and structure. Be as creaঞve as you like, perhaps
adding color, transparency, and other features to your image.

See the soluঞon

Chapter 14

Algebraic Data Types To Call Our Own

In this chapter we’ll learn how to create our own algebraic data types, and bring together all the tools we’ve
seen far.

So far in Creaঞve Scala we’ve used (algebraic) data types provided by Scala or Doodle, such as List and Point.
In this secঞon we’ll learn how to create our own algebraic data types in Scala, opening up new possibiliঞes for
the type of programs we can write.

If you run the examples from the SBT console within Doodle they will just work. If not, you will need to
start your code with the following imports to make Doodle available.

import doodle.core._

import doodle.image._

import doodle.image.syntax._

import doodle.image.syntax.core._

import doodle.java2d._

14.1 Algebraic Data Types

We’ve used algebraic data types throughout Creaঞve Scala, but we’ve been a bit informal in how we describe
them. At this stage a bit more rigour is useful.

An algebraic data type is built from two components: - logical ors; and - logical ands.

The List data type is a great example of an algebraic data type, as it uses both pa�erns. A List is Nil or a pair
(the logical or pa�ern) and a pair has a head and a tail (the logical and pa�ern). Point is another example. A
Point is either Cartesian or Polar. A Cartesian has an x and y coordinate, while a Polar has a radius and
an angle. Note it’s not necessary to use both pa�erns to be an algebraic data type.

Being funcঞonal programmers we naturally have some fancy words for the logical or and logical and pa�erns.
They are: - a sum type for the logical or; and - a product type for the logical and.

The concept of an algebraic data type is not specific to Scala. Let’s get some pracঞce working with the concept
before we see how to write algebraic data types in Scala.

Exercises

14.1.0.0.1 Path Elements The PathElement type, used to construct paths, is a simple algebraic data type.
You’ve used PathElement quite a bit so far. How do you think PathElement is defined in terms of sum and
product types?

165

166 CHAPTER 14. ALGEBRAIC DATA TYPES TO CALL OUR OWN

See the soluঞon

14.1.0.0.2 Totally Turtles The Instruction type we used to control the turtle is also an algebraic data type.
How do you think Instruction is defined?

See the soluঞon

14.1.1 Defining Algebraic Data Types

No we understand how to model data with algebraic data types, let’s see how to define our own.

The pa�ern is this:

• If A is a B or C write

sealed abstract class A extends Product with Serializable

final case class B() extends A

final case class C() extends A

There is a lot boilerplate here, which we can basically ignore beyond accepঞng it’s stuff we have to write. How-
ever, if you’re interested in what it means (and possibly have some prior object-oriented programming experi-
ence).

Describe sealed etc. here.

To define PathElement we might start with

sealed abstract class PathElement extends Product with Serializable

final case class MoveTo() extends PathElement

final case class LineTo() extends PathElement

final case class CurveTo() extends PathElement

The other half of the pa�ern is

• If A has a B and C, write

final case class A(b: B, c: C)

Describe constructor parameters here.

Returning to PathElement, MoveTo and LineTo each have a point (the desঞnaঞon) and CurveTo has a desঞ-
naঞon point and two control points. So we could write.

sealed abstract class PathElement extends Product with Serializable

final case class MoveTo(to: Point) extends PathElement

final case class LineTo(to: Point) extends PathElement

final case class CurveTo(cp1: Point, cp2: Point, to: Point) extends PathElement

And this is essenঞally how PathElement is defined in Doodle.

14.2. BUILD YOUR OWN TURTLE 167

Exercise

Define your own algebraic data type to represent Instruction.

See the soluঞon

14.2 Build Your Own Turtle

Here’s the Instruction type we defined in the previous secঞon.

sealed abstract class Instruction extends Product with Serializable

final case class Forward(distance: Double) extends Instruction

final case class Turn(angle: Angle) extends Instruction

final case class Branch(instructions: List[Instruction]) extends Instruction

final case class NoOp() extends Instruction

Now we’ve defined our own Instruction type, let’s go one further and create our own Turtle. To complete
our turtle we need to implement draw. We can start with

object Turtle {

def draw(instructions: List[Instruction]): Image =

???

}

Instruction is an algebraic data type, so we know we can use structural recursion to process it. However
to do so we need to also store the current state of the turtle: it’s locaঞon (a Vec) and heading (an Angle).
Implement a type to hold this data.

See the soluঞon

When we process the instrucঞons, we will turn them into a List[PathElement], which we can later wrap
with an open path to create an Image. For each instrucঞon, the conversion will be a funcঞon of the current
turtle state and the instrucঞon, and will returnan updated state and a List[PathElement].

Implement a method process to do this job with signature

def process(state: TurtleState, instruction: Instruction): (TurtleState, List[PathElement]) =

???

First implement this without branching instrucঞons. We’ll return to branches in a moment.

See the soluঞon

Now using process write a structural recursion over List[Instruction] that converts the instrucঞons to a
List[PathElement]. Call this method iterate with signature

def iterate(state: TurtleState, instructions: List[Instruction]): List[PathElement] =

???

See the soluঞon

Now add branching to process, using iterate as a uঞlity.

168 CHAPTER 14. ALGEBRAIC DATA TYPES TO CALL OUR OWN

def process(state: TurtleState, instruction: Instruction): (TurtleState, List[PathElement]) = {

import PathElement._

instruction match {

case Forward(d) =>

val nowAt = state.at + Vec.polar(d, state.heading)

val element = lineTo(nowAt.toPoint)

(state.copy(at = nowAt), List(element))

case Turn(a) =>

val nowHeading = state.heading + a

(state.copy(heading = nowHeading), List())

case Branch(is) =>

val branchedElements = iterate(state, is)

(state, moveTo(state.at.toPoint) :: branchedElements)

case NoOp() =>

(state, List())

}

}

Now implement draw using iterate.

See the soluঞon

14.2.1 Extensions

Turtles that can make random choices can lead to more organic images. Can you implement this?

Chapter 15

Summary

In this text we have covered a handful of the essenঞal funcঞonal programming tools available in Scala.

15.1 Representaঞons and Interpreters

We started by wriঞng expressions to create and compose images. Each program we wrote went through two
disঞnct phases:

1. Build an Image
2. Call the draw method to display the image

This process demonstrates two important funcঞonal programming pa�erns: building intermediate representa-
onsࢼ of the result we want, and interpreࢼng the representaࢼons to produce output.

15.2 Abstracঞon

Building an intermediate representaঞon allows us to only model the aspects of the result that we consider
important and abstract irrelevant details.

For example, Doodle directly represents the primiঞve shapes and geometric relaঞonships in our drawings, with-
out worrying about implementaঞon details such as screen coordinates. This keeps our code clear and maintain-
able, and limits the number of “magic numbers” we need to write. For example, it is a lot easier to determine
that this Doodle program produces a house:

def myImage: Image =

Triangle(50, 50) above Rectangle(50, 50)

// myImage: Image = // ...

than this implementaঞon in Java2D:

def drawImage(g: Graphics2D): Unit = {

g.setStroke(new BasicStroke(1.0f))

g.setPaint(new Color(0, 0, 0))

val path = new Path2D.Double()

path.moveTo(25, 0)

path.lineTo(50, 50)

path.lineTo(0, 50)

path.lineTo(25, 0)

169

170 CHAPTER 15. SUMMARY

path.closePath()

g.draw(path)

f.drawRect(50, 50, 50, 50)

}

It’s important to realise that all of the imperaঞve Java2D code is sঞll present in Doodle. The difference is we
have hidden it away into the draw method. draw acts as interpreter for our Images, filling in all of the details
about coordinates, paths, and graphics contexts that we don’t want to think about in our code.

Separaঞng the immediate value and the interpreter also allows us to change how interpretaঞon is performed.
Doodle already comes with two interpreters, one of which draws in the Java2D framework while the other
draws in the HTML canvas. You can image yet more interpreters to, for example, achieve arঞsঞc effects such
as drawing images in a hand-drawn style.

15.3 Composiঞon

In addiঞon to making our programs clearer, the funcঞonal approach employed by Doodle allows us to compose
images from other images. For example, we can re-use our house to draw a street:

val house = Triangle(50, 50) above Rectangle(50, 50)

// house: Image = // ...

val street = house beside house beside house

// street: Image = // ...

The Image and Color values we create are immutable so we can easily re-use a single house three ঞmes within
the same image.

This approach allows us to break down a complex image into simpler parts that we then combine together to
create the desired result.

Reusing immutable data, a technique called structure sharing, is the basis of many fast, memory efficient im-
mutable data structures. The quinঞssenঞal example in Doodle is the Sierpinski triangle where we re-used a
single Triangle object to represent an image containing nearly 20,000 disঞnct coloured triangles.

15.4 Expression-Oriented Programming

Scala provides convenient syntax to simplify creaঞng data structures in a funcঞonal manner. Constructs such
as condiঞonals, loops, and blocks are expressions, allowing us to write short method bodies without declaring
lots of intermediate variables. We quickly adopt a pa�ern of wriঞng short methods whose main purpose is to
return a value, so omiমng the return keyword is also a useful shorthand.

15.5 Types are a Safety Net

Scala’s type system helps us by checking our code. Every expression has a type that is checked at compile ঞme
to see if it matches up with its surroundings. We can even define our own types with the explicit purpose of
stopping ourselves from making mistakes.

A simple example of this is Doodle’s Angle type, which prevents us confusing numbers and angles, and degrees
and radians:

15.6. FUNCTIONS AS VALUES 171

90

// res0: Int = 90

90.degrees

// res1: doodle.core.Angle = Angle(1.5707963267948966)

90.radians

// res2: doodle.core.Angle = Angle(2.0354056994857643)

90.degrees + 90.radians

// res3: doodle.core.Angle = Angle(3.606202026280661)

90 + 90.degrees

// <console>:20: error: overloaded method value + with alternatives:

// (x: Double)Double <and>

// (x: Float)Float <and>

// (x: Long)Long <and>

// (x: Int)Int <and>

// (x: Char)Int <and>

// (x: Short)Int <and>

// (x: Byte)Int <and>

// (x: String)String

// cannot be applied to (doodle.core.Angle)

// 90 + 90.degrees

// ^

15.6 Funcঞons as Values

We spent a lot of ঞme wriঞng methods to produce values. Methods let us abstract over parameters. For
example, the method below abstracts over colours to produce different coloured dots:

def dot(color: Color): Image =

Circle(10) strokeWidth 0 fillColor color

// dot: Color => Image = // ...

Coming from object oriented languages, methods are nothing special. More interesঞng is Scala’s ability to turn
methods into funcࢼons that can be passed around as values:

def spectrum(shape: Color => Image): Image =

shape(Color.red) beside shape(Color.blue) beside shape(Color.green)

// spectrum: (Color => Image) => Image = // ...

spectrum(dot)

// res0: Image = // ...

We wrote a number of programs that used funcঞons as values, but the quinঞssenঞal example was the map

method of List. In the Collecঞons chapter we saw how map lets us transform sequences without allocaঞng
and pushing values onto intermediate buffers:

List(1, 2, 3).map(x => x * 2)

// res0: List[Int] = List(2, 4, 6)

Funcঞons, and their first class status as values, are hugely important for wriঞng simple, boilerplate-free code.

172 CHAPTER 15. SUMMARY

15.7 Final Words

The intenঞon of this book has been to introduce you to the funcঞonal parts of Scala. These are what differenঞ-
ate Scala from older commercial languages such as Java and C. However, this is only part of Scala’s story. Many
modern languages support funcঞonal programming, including Ruby, Python, Javascript, and Clojure. How does
Scala relate to these languages, and why would you want to choose it over the other available opঞons?

Perhaps the most significant draw to Scala is its type system. This disঞnguishes Scala from popular languages
such as Ruby, Python, Javascript, and Clojure, which are dynamically typed. Having staঞc types in a language is
undeniably a trade-off—wriঞng code is slower because we have to saঞsfy the compiler at every stage. However,
once our code compiles we gain confidence about its quality.

Another major draw is Scala’s blending of object-oriented and funcঞonal programming paradigms. We saw a
li�le of this in the first chapter—every value is an object with methods, fields, and a class (its type). However,
we haven’t created any of our own data types in this book. Creaঞng types is synonymous with declaring classes,
and Scala supports a full gamut of features such as classes, traits, interitance, and generics.

Finally, a major benefit of Scala is its compaঞbility with Java. In many ways Scala can be seen as a superset of
Java, and interoperaঞon between the two languages is quite straigh�orward. This opens up a world of Java
libraries to our Scala applicaঞons, and allows flexibility when translaঞng Java applicaঞons to Scala.

15.8 Next Steps

We hope you enjoyed Creaঞve Scala and drawing diagrams with Doodle. If you would like to learn more about
Scala, we recommend that you pick one of the many great books available on the language.

Our ownbook, Essenঞal Scala, is available fromourweb site and conঞnuesCreaঞve Scala’s approach of teaching
Scala by discussing and demonstraঞng core design pa�erns and the benefits they offer.

If you want to challenge yourself, try drawing something more complex with Doodle and sharing it with us via
Gi�er. There are lots of things you can try—check the examples directory in the Doodle codebase for some
suggesঞons:

http://underscore.io/training/courses/essential-scala
https://gitter.im/underscoreio/scala

15.8. NEXT STEPS 173

Figure 15.1: Koch Triangle (Koch.scala)

Figure 15.2: Suburban Scene (Street.scala)

174 CHAPTER 15. SUMMARY

Figure 15.3: Mandelbrot Fractal by Mat Moore (Mandelbrot.scala)

Appendix A

Syntax Quick Reference

A.1 Literals and Expressions

// Literals:

123 // Int

123.0 // Double

"Hello!" // String

true // Boolean

// Math:

10 + 2 // Int + Int = Int

10 + 2.0 // Int + Double = Double

10 / 2 // Int / Int = Double

// Boolean logic:

true && false // logical AND

true || false // logical OR

!true // logical NOT

// String concatenation:

"abc" + "def" // String

"abc" + 123 // auto-conversion from Int to String

// Method calls and infix operators:

1.+(2) // method call style

1 + 2 // infix operator style

1 + 2 + 3 // equivalent to 1.+(2).+(3)

// Conditionals:

if(booleanExpression) expressionA else expressionB

// Blocks:

{

sideEffectExpression1

sideEffectExpression2

resultExpression

}

A.2 Value and Method Declaraঞons

175

176 APPENDIX A. SYNTAX QUICK REFERENCE

// Value declaration syntax:

val valueName: SomeType = resultExpression // declaration with explicit type

val valueName = resultExpression // declaration with inferred type

// Method with parameter list and explicit return type:

def methodName(argName: ArgType, argName: ArgType): ReturnType =

resultExpression

// Method with parameter list and inferred return type:

def methodName(argName: ArgType, argName: ArgType) =

resultExpression

// Multi-expression method (using a block):

def methodName(argName: ArgType, argName: ArgType): ReturnType = {

sideEffectExpression1

sideEffectExpression2

resultExpression

}

// Method with no parameter list:

def methodName: ReturnType =

resultExpression

// Calling a method that has a parameter list:

methodName(arg, arg)

// Calling a method that has no parameter list:

methodName

A.3 Funcঞons as Values

Funcঞon values are wri�en (argName: ArgType, ...) => resultExpression:

val double = (num: Int) => num * 2

// double: Int => Int = <function1>

val sum = (a: Int, b: Int) => a + b

sum: (Int, Int) => Int = <function2>

Mulঞ-line funcঞons are wri�en using block expressions:

val printAndDouble = (num: Int) => {

println("The number was " + num)

num * 2

}

// printAndDouble: Int => Int = <function1>

scala> printAndDouble(10)

// The number was 10

// res0: Int = 20

We have to write funcঞon types when declaring parameters and return types. The syntax is ArgType =>

ResultType or (ArgType, ...) => ResultType:

A.4. DOODLE REFERENCE GUIDE 177

def doTwice(value: Int, func: Int => Int): Int =

func(func(value))

// doTwice: (value: Int, func: Int => Int)Int

doTwice(1, double)

// res0: Int = 4

Funcঞon values can be wri�en inline as normal expressions:

doTwice(1, (num: Int) => num * 10)

// res1: Int = 100

We can someঞmes omit the argument types, assuming the compiler can figure things out for us:

doTwice(1, num => num * 10)

// res2: Int = 100

A.4 Doodle Reference Guide

A.4.1 Imports

// These imports get you everything you need:

import doodle.core._

import doodle.syntax._

A.4.2 Creaঞng Images

// Primitive images (black outline, no fill):

val i: Image = Circle(radius)

val i: Image = Rectangle(width, height)

val i: Image = Triangle(width, height)

// Compound images written using operator syntax:

val i: Image = imageA beside imageB // horizontally adjacent

val i: Image = imageA above imageB // vertically adjacent

val i: Image = imageA below imageB // vertically adjacent

val i: Image = imageA on imageB // superimposed

val i: Image = imageA under imageB // superimposed

// Compound images written using method call syntax:

val i: Image = imageA.beside(imageB)

// etc...

A.4.3 Styling Images

// Styling images written using operator syntax:

val i: Image = image fillColor color // new fill color (doesn't change line)

val i: Image = image strokeColor color // new line color (doesn't change fill)

val i: Image = image strokeWidth integer // new line width (doesn't change fill)

val i: Image = image fillColor color strokeColor otherColor // new fill and line

// Styling images using method call syntax:

val i: Image = imageA.fillColor(color)

val i: Image = imageA.fillColor(color).strokeColor(otherColor)

178 APPENDIX A. SYNTAX QUICK REFERENCE

// etc...

A.4.4 Colours
// Basic colors:

val c: Color = Color.red // predefined colors

val c: Color = Color.rgb(255.uByte, 127.uByte, 0.uByte) // RGB color

val c: Color = Color.rgba(255.uByte, 127.uByte, 0.uByte, 0.5.normalized) // RGBA color

val c: Color = Color.hsl(15.degrees, 0.25.normalized, 0.5.normalized) // HSL color

val c: Color = Color.hsla(15.degrees, 0.25.normalized, 0.5.normalized, 0.5.normalized) // HSLA color

// Transforming/mixing colors using operator syntax:

val c: Color = someColor spin 10.degrees // change hue

val c: Color = someColor lighten 0.1.normalized // change brightness

val c: Color = someColor darken 0.1.normalized // change brightness

val c: Color = someColor saturate 0.1.normalized // change saturation

val c: Color = someColor desaturate 0.1.normalized // change saturation

val c: Color = someColor fadeIn 0.1.normalized // change opacity

val c: Color = someColor fadeOut 0.1.normalized // change opacity

// Transforming/mixing colors using method call syntax:

val c: Color = someColor.spin(10.degrees)

val c: Color = someColor.lighten(0.1.normalized)

// etc...

A.4.5 Paths
// Create path from list of PathElements:

val i: Image = OpenPath(List(

MoveTo(Vec(0, 0).toPoint),

LineTo(Vec(10, 10).toPoint)

))

// Create path from other sequence of PathElements:

val i: Image = OpenPath(

(0 until 360 by 30) map { i =>

LineTo(Vec.polar(i.degrees, 100).toPoint)

}

)

// Types of element:

val e1: PathElement = MoveTo(toVec.toPoint) // no line

val e2: PathElement = LineTo(toVec.toPoint) // straight line

val e3: PathElement = BezierCurveTo(cp1Vec.toPoint, cp2Vec.toPoint, toVec.toPoint) // curved line

// NOTE: If the first element isn't a MoveTo,

// it is converted to one

A.4.6 Angles and Vecs

val a: Angle = 30.degrees // angle in degrees

val a: Angle = 1.5.radians // angle in radians

val a: Angle = math.Pi.radians // π radians

val a: Angle = 1.turns // angle in complete turns

val v: Vec = Vec.zero // zero vector (0,0)

A.4. DOODLE REFERENCE GUIDE 179

val v: Vec = Vec.unitX // unit x vector (1,0)

val v: Vec = Vec.unitY // unit y vector (0,1)

val v: Vec = Vec(3, 4) // vector from cartesian coords

val v: Vec = Vec.polar(30.degrees, 5) // vector from polar coords

val v: Vec = Vec(2, 1) * 10 // multiply length

val v: Vec = Vec(20, 10) / 10 // divide length

val v: Vec = Vec(2, 1) + Vec(1, 3) // add vectors

val v: Vec = Vec(5, 5) - Vec(2, 1) // subtract vectors

val v: Vec = Vec(5, 5) rotate 45.degrees // rotate counterclockwise

val x: Double = Vec(3, 4).x // x coordinate

val y: Double = Vec(3, 4).y // y coordinate

val a: Angle = Vec(3, 4).angle // counterclockwise from (1, 0)

val l: Double = Vec(3, 4).length // length

180 APPENDIX A. SYNTAX QUICK REFERENCE

Appendix B

Soluঞons to Exercises

B.1 Expressions, Values, and Types

B.1.1 Soluঞon to: Arithmeঞc

This exercise is just about geমng used to wriঞng Scala code. Here is one possible soluঞon.

1 + 43 - 2

// res0: Int = 42

Return to the exercise

B.1.2 Soluঞon to: Appending Strings

Something like the below should do.

"It is a truth ".++("universally acknowledged")

// res1: String = "It is a truth universally acknowledged"

"It is a truth " ++ "universally acknowledged"

// res2: String = "It is a truth universally acknowledged"

Return to the exercise

B.1.3 Soluঞon to: Precedence

A bit of exploraঞon at the console should convince you that yes, Scala does maintain the standard precedence
rules. The example below demonstrates this.

1 + 2 * 3

// res3: Int = 7

1 + (2 * 3)

// res4: Int = 7

(1 + 2) * 3

// res5: Int = 9

Return to the exercise

181

182 APPENDIX B. SOLUTIONS TO EXERCISES

B.1.4 Soluঞon to: Types and Values

1 + 2

// res12: Int = 3

This expression has type Int and evaluates to 3.

"3".toInt

// res13: Int = 3

This expression has type Int and evaluates to 3.

"Electric blue".toInt

// java.lang.NumberFormatException: For input string: "Electric blue"

// at java.lang.NumberFormatException.forInputString(NumberFormatException.java:65)

// at java.lang.Integer.parseInt(Integer.java:580)

// at java.lang.Integer.parseInt(Integer.java:615)

// at scala.collection.immutable.StringLike.toInt(StringLike.scala:304)

// at scala.collection.immutable.StringLike.toInt$(StringLike.scala:304)

// at scala.collection.immutable.StringOps.toInt(StringOps.scala:33)

// at repl.Session$App$$anonfun$17.apply$mcI$sp(exercises.md:100)

// at repl.Session$App$$anonfun$17.apply(exercises.md:100)

// at repl.Session$App$$anonfun$17.apply(exercises.md:100)

This expression has type Int but fails at run-ঞme.

"Electric blue".take(1)

// res14: String = "E"

This expression has type String and evaluates to "E".

"Electric blue".take("blue")

// error: type mismatch;

// found : String("blue")

// required: Int

// "Electric blue".take("blue")

// ^^^^^^

This expression fails at compile-ঞme and hence has no type.

1 + ("Moonage daydream".indexOf("N"))

// res16: Int = 0

This expression has type Int and evaluates to 0.

1 / 1 + ("Moonage daydream".indexOf("N"))

// res17: Int = 0

This expression has type Int and, due to precedence, evaluates to (1 / 1) + -1, which is 0.

1 / (1 + ("Moonage daydream".indexOf("N")))

// java.lang.ArithmeticException: / by zero

// at repl.Session$App$$anonfun$22.apply$mcI$sp(exercises.md:132)

// at repl.Session$App$$anonfun$22.apply(exercises.md:132)

// at repl.Session$App$$anonfun$22.apply(exercises.md:132)

B.2. COMPUTINGWITH PICTURES 183

This expression has type Int but fails at run-ঞme with a division by zero.

Return to the exercise

B.1.5 Soluঞon to: Floaঞng Point Failings

Double is an approximaঞon because it has the fit within the computer’s finite memory. A Double takes up
precisely 64-bits, which is enough space to store a lot of digits but not enough to store a number that, like π,
has an infinite expansion.

The number ⅓ also has an infinite expansion in decimal. Because Doubles are stored in binary there are some
numbers that can be represented in a finite number of decimal digits but have no finite representaঞon in binary.
0.1 turns out to be one such number.

In general, floaঞng point numbers can lead to nasty surprises if you expect them to act like the reals. They are
fine for our purposes in Creaঞve Scala, but don’t go using them to write accounঞng so[ware!

Return to the exercise

B.1.6 Soluঞon to: Beyond Expressions

This is very open ended quesঞon. There are several ways to go beyond the model we have so far.

To be useful our programs must be capable of creaঞng effects—changes in the world that go beyond the com-
puter’s memory. For example, displaying things on the screen, making sound, sending messages to other com-
puters, and the like. The console implicitly does some of this for us, by prinঞng values on the screen. We’ll need
to go a bit beyond that for more useful programs.

We also don’t have any way to define our own objects and methods, or reuse values in our programs. If we
want to, say, use someone’s name across a program we have to repeat that name everywhere. We need more
methods of abstracࢼon and that’s what we’ll turn to soon.

Return to the exercise

B.2 Compuঞng With Pictures

B.2.1 Soluঞon to: I Go Round in Circles

In this exercise we’re checking that our Doodle install is working correctly and we’re geমng used to using the
library. One of the important points in Doodle is we separate defining the image from drawing the image. We’ll
talk more about this throughout the book.

We can create circles with the code below.

Image.circle(1)

Image.circle(10)

Image.circle(100)

We can draw the circles by calling the draw method on each circle.

184 APPENDIX B. SOLUTIONS TO EXERCISES

Image.circle(1).draw()

Image.circle(10).draw()

Image.circle(100).draw()

Return to the exercise

B.2.2 Soluঞon to: My Type of Art

They all have type Image, as we can tell from the console.

:type Image.circle(10)

// doodle.core.Image

:type Image.rectangle(10, 10)

// doodle.core.Image

:type Image.triangle(10, 10)

// doodle.core.Image

Return to the exercise

B.2.3 Soluঞon to: Not My Type of Art

Once again, we can ask the console this quessঞon.

:type Image.circle(10).draw()

// Unit

We see that the type of drawing an image is Unit. Unit is the type of expressions that have no interesঞng
value to return. This is the case for draw; we call it because we want something to appear on the screen, not
because we have a use for the value it returns. There is only one value with type Unit. This value is also called
unit, which wri�en as a literal expression is ()

You’ll note that the console doesn’t print unit by default.

()

We can ask the console for the type to show that there really is unit here.

:type ()

// Unit

Return to the exercise

B.2.4 Soluঞon to: The Width of a Circle

It’s three small circles on top of a bigger circle, and we can just about state this as is in code.

(Image

.circle(20)

.beside(Image.circle(20))

.beside(Image.circle(20))).on(Image.circle(60))

// res0: Image = On(

// Beside(Beside(Circle(20.0), Circle(20.0)), Circle(20.0)),

// Circle(60.0)

B.2. COMPUTINGWITH PICTURES 185

//)

Return to the exercise

B.2.5 Soluঞon to: Evil Eye

Here’s my amulet:

Image

.circle(10)

.fillColor(Color.black)

.on(Image.circle(20).fillColor(Color.cornflowerBlue))

.on(Image.circle(30).fillColor(Color.white))

.on(Image.circle(50).fillColor(Color.darkBlue))

// res0: Image = On(

// On(

// On(

// FillColor(

// Circle(10.0),

// RGBA(

// UnsignedByte(-128),

// UnsignedByte(-128),

// UnsignedByte(-128),

// Normalized(1.0)

//)

//),

// FillColor(

// Circle(20.0),

// RGBA(

// UnsignedByte(-28),

// UnsignedByte(21),

// UnsignedByte(109),

// Normalized(1.0)

//)

//)

//),

// FillColor(

// Circle(30.0),

// RGBA(

// UnsignedByte(127),

// UnsignedByte(127),

// UnsignedByte(127),

// Normalized(1.0)

//)

//)

//),

// FillColor(

// Circle(50.0),

// RGBA(

// UnsignedByte(-128),

// UnsignedByte(-128),

// UnsignedByte(11),

// Normalized(1.0)

//)

//)

//)

Return to the exercise

186 APPENDIX B. SOLUTIONS TO EXERCISES

B.2.6 Soluঞon to: Analogous Triangles

These sort of examples are geমng a bit too long to write out at the console. We’ll look at a way around this
next.

Image.triangle(40, 40)

.strokeWidth(6.0)

.strokeColor(Color.darkSlateBlue)

.fillColor(Color.darkSlateBlue

.lighten(0.3.normalized)

.saturate(0.2.normalized)

.spin(10.degrees))

.above(Image.triangle(40, 40)

.strokeWidth(6.0)

.strokeColor(Color.darkSlateBlue.spin(-30.degrees))

.fillColor(Color.darkSlateBlue

.lighten(0.3.normalized)

.saturate(0.2.normalized)

.spin(-20.degrees))

.beside(Image.triangle(40, 40)

.strokeWidth(6.0)

.strokeColor(Color.darkSlateBlue.spin(30.degrees))

.fillColor(Color.darkSlateBlue

.lighten(0.3.normalized)

.saturate(0.2.normalized)

.spin(40.degrees))))

// res15: Image = Above(

// FillColor(

// StrokeColor(

// StrokeWidth(Triangle(40.0, 40.0), 6.0),

// RGBA(

// UnsignedByte(-56),

// UnsignedByte(-67),

// UnsignedByte(11),

// Normalized(1.0)

//)

//),

// HSLA(

// Angle(4.5110048359238055),

// Normalized(0.5899999999999999),

// Normalized(0.692156862745098),

// Normalized(1.0)

//)

//),

// Beside(

// FillColor(

// StrokeColor(

// StrokeWidth(Triangle(40.0, 40.0), 6.0),

// HSLA(

// Angle(3.812873135126074),

// Normalized(0.3899999999999999),

// Normalized(0.39215686274509803),

// Normalized(1.0)

//)

//),

// HSLA(

// Angle(3.987406060325507),

// Normalized(0.5899999999999999),

// Normalized(0.692156862745098),

// Normalized(1.0)

B.2. COMPUTINGWITH PICTURES 187

//)

//),

// FillColor(

// StrokeColor(

// StrokeWidth(Triangle(40.0, 40.0), 6.0),

// HSLA(

// Angle(4.860070686322672),

// Normalized(0.3899999999999999),

// Normalized(0.39215686274509803),

// Normalized(1.0)

//)

//),

// HSLA(

// Angle(5.034603611522105),

// Normalized(0.5899999999999999),

// ...

Return to the exercise

B.2.7 Soluঞon to: Compilaঞon Target

The simplest soluঞon is to create three concentric circles using the on method:

Image

.circle(20)

.on(Image.circle(40))

.on(Image.circle(60))

For the extra credit we can create a stand using two rectangles:

Image

.circle(20)

.on(Image.circle(40))

.on(Image.circle(60))

.above(Image.rectangle(6, 20))

.above(Image.rectangle(20, 6))

Return to the exercise

B.2.8 Soluঞon to: Stay on Target

The trick here is using parentheses to control the order of composiঞon. The fillColor(), strokeColor(),
and strokeWidth()methods apply to a single image—we need to make sure that image comprises the correct
set of shapes:

Image

.circle(20).fillColor(Color.red)

.on(Image.circle(40).fillColor(Color.white))

.on(Image.circle(60).fillColor(Color.red))

.above(Image.rectangle(6, 20).fillColor(Color.brown))

.above(Image.rectangle(20, 6).fillColor(Color.brown))

.above(Image.rectangle(80, 25).noStroke.fillColor(Color.green))

Return to the exercise

188 APPENDIX B. SOLUTIONS TO EXERCISES

B.3 Wriঞng Larger Programs

B.3.1 Soluঞon to: The Top-Level

No, Scala doesn’t allow us to do this. For example, we can’t write

object {}

We have to give a name to any object literal we create.

Return to the exercise

B.3.2 Soluঞon to: The Top-Level Part 2

We sure can!

We can put a val inside an object literal like so:

object Example {

val hi = "Hi!"

}

We can then refer to it using the . syntax we’ve been using already.

Example.hi

// res4: String = "Hi!"

Note that we can’t use hi on it’s own

hi

// error: not found: value hi

We have to tell Scala we want to refer to the name hi defined inside the object Example.

Return to the exercise

B.3.3 Soluঞon to: Exercises

A simple example to get started with. answer is 1 + 2, which is 3.

Return to the exercise

B.3.4 Soluঞon to: Exercises Part 2

Another simple example. answer is 1 + 2, which is 3. Two.a is not in scope where answer is defined.

Return to the exercise

B.3.5 Soluঞon to: Exercises Part 3

Here Answer.a shadows One.a so answer is 1 + 2, which is 3.

Return to the exercise

B.3. WRITING LARGER PROGRAMS 189

B.3.6 Soluঞon to: Exercises Part 4

This is perfectly fine. The expression a + 1 on the right hand side of the declaraঞon of b is an expression like
any other so answer is 3 again.

Return to the exercise

B.3.7 Soluঞon to: Exercises Part 5

This code doesn’t compile as b is not in scope where answer is declared.

Return to the exercise

B.3.8 Soluঞon to: Exercises Part 6

Trick quesঞon! This code doesn’t work. Here a and b are defined in terms of each other which leads to a circular
dependency that can’t be resolved.

Return to the exercise

B.3.9 Soluঞon to: Archery Again

We decided to name the target, stand, and ground, as shown below. This makes is clear how the final image is
constructed. Naming more components seemed to us that it would not aid comprehension.

val coloredTarget =

(

Image.circle(10).fillColor(Color.red) on

Image.circle(20).fillColor(Color.white) on

Image.circle(30).fillColor(Color.red)

)

val stand =

Image.rectangle(6, 20) above Image.rectangle(20, 6).fillColor(Color.brown)

val ground =

Image.rectangle(80, 25).strokeWidth(0).fillColor(Color.green)

val image = coloredTarget above stand above ground

Return to the exercise

B.3.10 Soluঞon to: Streets Ahead

Here’s our soluঞon. As you can see, by breaking the scene down into smaller components we were able to
write relaঞvely li�le code.

val roof = Image.triangle(50, 30) fillColor Color.brown

val frontDoor =

(Image.rectangle(50, 15) fillColor Color.red) above (

(Image.rectangle(10, 25) fillColor Color.black) on

(Image.rectangle(50, 25) fillColor Color.red)

)

190 APPENDIX B. SOLUTIONS TO EXERCISES

val house = roof above frontDoor

val tree =

(

(Image.circle(25) fillColor Color.green) above

(Image.rectangle(10, 20) fillColor Color.brown)

)

val streetSegment =

(

(Image.rectangle(30, 3) fillColor Color.yellow) beside

(Image.rectangle(15, 3) fillColor Color.black) above

(Image.rectangle(45, 7) fillColor Color.black)

)

val street = streetSegment beside streetSegment beside streetSegment

val houseAndGarden =

(house beside tree) above street

val image = (

houseAndGarden beside

houseAndGarden beside

houseAndGarden

) strokeWidth 0

Return to the exercise

B.4 The Subsঞtuঞon Model of Evaluaঞon

B.4.1 Soluঞon to: No Subsঞtute for Println

Here is a simple example that illustrates this. The following two programs are observably different.

println("Happy birthday to you!")

// Happy birthday to you!

println("Happy birthday to you!")

// Happy birthday to you!

println("Happy birthday to you!")

// Happy birthday to you!

val happy = println("Happy birthday to you!")

// Happy birthday to you!

happy

happy

happy

Therefore we cannot freely use subsঞtuঞon in the presence of side effects, and we must be aware of the order
of evaluaঞon.

Return to the exercise

B.4.2 Soluঞon to: Madness to our Methods

The following code demonstrates that method parameters are evaluated from le[to right.

B.4. THE SUBSTITUTION MODEL OF EVALUATION 191

Color.hsl(

{

println("a")

0.degrees

},

{

println("b")

1.0

},

{

println("c")

1.0

}

)

// a

// b

// c

// res14: Color = HSLA(

// Angle(0.0),

// Normalized(1.0),

// Normalized(1.0),

// Normalized(1.0)

//)

We can write this more compactly as

Color.hsl({ println("a"); 0.degrees },

{ println("b"); 1.0 },

{ println("c"); 1.0 })

// a

// b

// c

// res15: Color = HSLA(

// Angle(0.0),

// Normalized(1.0),

// Normalized(1.0),

// Normalized(1.0)

//)

Return to the exercise

B.4.3 Soluঞon to: The Last Order

We’ve already seen that expressions are evaluated from top-to-bo�om, and method parameters are evaluated
from le[-to-right. Wemight want to check that expressions are in general evaluated le[-to-right. We can show
this fairly easily.

{ println("a"); 1 } + { println("b"); 2 } + { println("c"); 3}

// a

// b

// c

// res16: Int = 6

So in conclusion we can say that Scala expressions are evaluated from top-to-bo�om and le[-to-right.

Return to the exercise

192 APPENDIX B. SOLUTIONS TO EXERCISES

B.5 Methods

B.5.1 Soluঞon to: Square

The soluঞon is

def square(x: Int): Int =

x * x

We can arrive at the soluঞon by the following steps.

We’re given the name (square), the type of the parameter (Int), and the type of the result (Int). From this we
can write the method skeleton

def square(x: Int): Int =

???

where we have chosen x as the name of the parameter. This is a fairly arbitrary choice. Where there is no
meaningful name you o[en see one-le�er names such as x, v, or i used.

By the way this is valid code. Enter it into the console and see! What happens if you call square when it’s
defined like so?

Now we need to complete the body. We’ve been told that squaring is mulঞplying a number by itself, so x * x

is what we replace the ??? with. We don’t need to wrap this in braces as there is only a single expression in
the body.

Return to the exercise

B.5.2 Soluঞon to: Halve
def halve(x: Double): Double =

x / 2.0

We can follow the same process as for square above to arrive at the soluঞon.

Return to the exercise

B.5.3 Soluঞon to: Exercise

The following program demonstrates that parameters are evaluated before the method body.

def example(a: Int, b: Int): Int = {

println("In the method body!")

a + b

}

example({ println("a"); 1 }, { println("b"); 2 })

// a

// b

// In the method body!

// res6: Int = 3

The alternaঞve we described above is used by some languages, most notably Haskell, and is known as lazy or
non-strict evaluaঞon.

Return to the exercise

B.6. STRUCTURAL RECURSION 193

B.6 Structural Recursion

B.6.1 Soluঞon to: Stacking Boxes

All you to do is change beside to above in boxes.

def stackedBoxes(count: Int): Image =

count match {

case 0 => Image.empty

case n => aBox.beside(stackedBoxes(n-1))

}

Return to the exercise

B.6.2 Soluঞon to: Guess the Result

The first example evaluates to 2, as the pa�ern "abcd" is the only match for the literal "abcd" amongst the
pa�erns.

The second example evaluates to "one", because the first matching case is the one that is evaluated.

The third example evaluates to 2, because case n defines a wildcard pa�ern that matches anything.

The final example evaluates to 1 because the first matching case is evaluated.

Return to the exercise

B.6.3 Soluঞon to: No Match

Here are three reasonable possibiliঞes I can think of; perhaps you came up with something else?

• The expression could evaluate to some default, like Image.empty (but how should Scala pick the right
default?)

• The Scala compiler should just not let you write code like that.
• The match expression will fail at runঞme.

Here’s a match expression that doesn’t match.

2 match {

case 0 => "zero"

case 1 => "one"

}

// scala.MatchError: 2 (of class java.lang.Integer)

// at repl.Session$App$$anonfun$5.apply(match.md:37)

The correct answer is one of the last two possibiliঞes, failing to compile or failing at runঞme. In this example
we have an error at runঞme. The exact answer depends on how Scala is configured (we can tell the compiler
to refuse to compile matches that it can show are not exhausঞve, but this is not the default behavior).

Return to the exercise

194 APPENDIX B. SOLUTIONS TO EXERCISES

B.6.4 Soluঞon to: Three (or More) Stacks

This is a modificaঞon of boxes, replacing beside with above.

def stacks(count: Int): Image =

count match {

case 0 => Image.empty

case n => aBox.above(boxes(n-1))

}

Return to the exercise

B.6.5 Soluঞon to: Alternaঞng Images

Here’s my soluঞon. I used an if expression because it’s a bit shorter than matching on the Boolean. Otherwise
it’s the same structural recursion pa�ern as before.

val star = Image

.star(5, 30, 15, 45.degrees)

.strokeColor(Color.teal)

.on(Image.star(5, 12, 7, 45.degrees).strokeColor(Color.royalBlue))

.strokeWidth(5.0)

val circle = Image

.circle(60)

.strokeColor(Color.midnightBlue)

.on(Image.circle(24).strokeColor(Color.plum))

.strokeWidth(5.0)

def alternatingRow(count: Int): Image = {

count match {

case 0 => Image.empty

case n =>

if(n % 2 == 0) star.beside(alternatingRow(n-1))

else circle.beside(alternatingRow(n-1))

}

}

Return to the exercise

B.6.6 Soluঞon to: Geমng Creaঞve

Here’s my soluঞon. I made the size of the star and its color depend on the counter.

def funRow(count: Int): Image = {

count match {

case 0 => Image.empty

case n =>

Image

.star(7, (10 * n), (7 * n), 45.degrees)

.strokeColor(Color.azure.spin((5 * n).degrees))

.strokeWidth(7.0)

.beside(funRow(n - 1))

}

}

B.6. STRUCTURAL RECURSION 195

Return to the exercise

B.6.7 Soluঞon to: Cross

It’s structural recursion over the natural numbers. You should end up with something like

def cross(count: Int): Image =

count match {

case 0 => <resultBase>

case n => <resultUnit> <add> cross(n-1)

}

Return to the exercise

B.6.8 Soluঞon to: Cross Part 2

From the picture we can work out that the base case is the hexagon in red.

Successive elements in the picture add circles to the top, bo�om, le[, and right of the image. So our
unit is a circle, but the addiঞon operator is not a simple beside or above like we’ve seen before but
unit.beside(unit.above(cross(n-1)).above(unit)).beside(unit).

Return to the exercise

B.6.9 Soluঞon to: Cross Part 3

Here’s what we wrote.

def cross(count: Int): Image = {

count match {

case 0 =>

Image.regularPolygon(6, 10, 0.degrees)

.strokeColor(Color.deepSkyBlue.spin(-180.degrees))

.strokeWidth(5.0)

case n =>

val circle = Image

.circle(20)

.strokeColor(Color.deepSkyBlue)

.on(Image.circle(15).strokeColor(Color.deepSkyBlue.spin(-15.degrees)))

.on(Image.circle(10).strokeColor(Color.deepSkyBlue.spin(-30.degrees)))

.strokeWidth(5.0)

circle.beside(circle.above(cross(n - 1)).above(circle)).beside(circle)

}

}

Return to the exercise

B.6.10 Soluঞon to: Exercises

It sure does! The base case is straigh�orward. Looking at the recursive case, we assume that identity(n-1)
returns the idenঞty for n-1 (which is exactly n-1). The idenঞty for n is then 1 + identity(n-1).

Return to the exercise

196 APPENDIX B. SOLUTIONS TO EXERCISES

B.6.11 Soluঞon to: Exercises Part 2

No way! This method is broken in two different ways. Firstly, because we’re mulঞplying in the recursive case
we will eventualy end up mulঞplying by base case of zero, and therefore the enঞre result will be zero.

We might try and fix this by adding a case for 1 (and perhaps wonder why the structural recursion skeleton let
us down).

def double(n: Int): Int =

n match {

case 0 => 0

case 1 => 1

case n => 2 * double(n-1)

}

This doesn’t give us the correct result, however! We’re doing the wrong thing at the recursive case: we should
be adding, not mulঞplying.

A bit of algebra:

2(n-1 + 1) == 2(n-1) + 2

So if double(n-1) is 2(n-1) then we should add 2, not mulঞply by 2. The correct method is

def double(n: Int): Int =

n match {

case 0 => 0

case n => 2 + double(n-1)

}

Return to the exercise

B.7 Fractals

B.7.1 Soluঞon to: The Chessboard

chessboard is a structural recursion over the natural numbers, so right away we can write down the skeleton
for this pa�ern.

def chessboard(count: Int): Image =

count match {

case 0 => resultBase

case n => resultUnit add chessboard(n-1)

}

As before we must decide on the base, unit, and addiঞon for the result. We’ve given you a hint by showing the
progression of chessboards in fig. ??. From this we can see that the base is a two-by-two chessboard.

val blackSquare = Image.rectangle(30, 30).fillColor(Color.black)

val redSquare = Image.rectangle(30, 30).fillColor(Color.red)

val base =

(redSquare.beside(blackSquare)).above(blackSquare.beside(redSquare))

B.7. FRACTALS 197

Now to work out the unit and addiঞon. Here we see a change from previous examples. The unit is the value
we get from the recursive call chessboard(n-1). The addiঞon operaঞon is (unit beside unit) above

(unit beside unit).

Puমng it all together we get

def chessboard(count: Int): Image = {

val blackSquare = Image.rectangle(30, 30).fillColor(Color.black)

val redSquare = Image.rectangle(30, 30).fillColor(Color.red)

val base =

(redSquare.beside(blackSquare)).above(blackSquare.beside(redSquare))

count match {

case 0 => base

case n =>

val unit = chessboard(n-1)

(unit.beside(unit)).above(unit.beside(unit))

}

}

Return to the exercise

B.7.2 Soluঞon to: Sierpinkski Triangle

The key step is to recognise that the basic unit of the Sierpinski triangle is triangle above (triangle

beside triangle). Once we’ve worked this out, the code has exactly the same structure as chessboard.
Here’s our implementaঞon.

def sierpinski(count: Int): Image = {

val triangle = Image.triangle(10, 10).strokeColor(Color.magenta)

count match {

case 0 => triangle.above(triangle.beside(triangle))

case n =>

val unit = sierpinski(n-1)

unit.above(unit.beside(unit))

}

}

Return to the exercise

B.7.3 Soluঞon to: Gradient Boxes

There are two ways to implement a soluঞon. The auxiliary parameter method is to add an extra parameter to
gradientBoxes and pass the Color through the structural recursion.

def gradientBoxes(n: Int, color: Color): Image =

n match {

case 0 => Image.empty

case n =>

aBox

.fillColor(color)

.beside(gradientBoxes(n - 1, color.spin(15.degrees)))

}

We could also make the fill color a funcঞon of n, as we demonstrated with the box size in growingBoxes above.

198 APPENDIX B. SOLUTIONS TO EXERCISES

def gradientBoxes(n: Int): Image =

n match {

case 0 => Image.empty

case n =>

aBox

.fillColor(Color.royalBlue.spin((15 * n).degrees))

.beside(gradientBoxes(n - 1))

}

Return to the exercise

B.7.4 Soluঞon to: Concentric Circles

This is almost idenঞcal to growingBoxes.

def concentricCircles(count: Int, size: Int): Image =

count match {

case 0 => Image.empty

case n =>

Image

.circle(size)

.on(concentricCircles(n-1, size + 5))

}

Return to the exercise

B.7.5 Soluঞon to: Once More, With Feeling

Here’s our soluঞon, where we’ve tried to break the problem into reusable parts and reduce the amount of
repeated code. We sঞll have a lot of repeঞঞon as we don’t yet have the tools to get rid of more. We’ll come to
that soon.

def circle(size: Int, color: Color): Image =

Image.circle(size).strokeWidth(3.0).strokeColor(color)

def fadeCircles(n: Int, size: Int, color: Color): Image =

n match {

case 0 => Image.empty

case n =>

circle(size, color)

.on(fadeCircles(n-1, size+7, color.fadeOutBy(0.05.normalized)))

}

def gradientCircles(n: Int, size: Int, color: Color): Image =

n match {

case 0 => Image.empty

case n =>

circle(size, color)

.on(gradientCircles(n-1, size+7, color.spin(15.degrees)))

}

def image: Image =

fadeCircles(20, 50, Color.red)

.beside(gradientCircles(20, 50, Color.royalBlue))

Return to the exercise

B.8. HORTICULTURE AND HIGHER-ORDER FUNCTIONS 199

B.7.6 Soluঞon to: Chessboard

Here’s how we did it. It has exactly the same pa�ern we used with boxes.

def chessboard(count: Int): Image = {

val blackSquare = Image.square(30) fillColor Color.black

val redSquare = Image.square(30) fillColor Color.red

val base =

(redSquare beside blackSquare) above (blackSquare beside redSquare)

def loop(count: Int): Image =

count match {

case 0 => base

case n =>

val unit = loop(n-1)

(unit beside unit) above (unit beside unit)

}

loop(count)

}

Return to the exercise

B.7.7 Soluঞon to: Boxing Clever

We can do this in two stages, first moving aBox within boxes.

def boxes(count: Int): Image = {

val aBox = Image.square(20).fillColor(Color.royalBlue)

count match {

case 0 => Image.empty

case n => aBox beside boxes(n-1)

}

}

Then we can use an internal method to avoid recreaঞng aBox on every recursion.

def boxes(count: Int): Image = {

val aBox = Image.square(20).fillColor(Color.royalBlue)

def loop(count: Int): Image =

count match {

case 0 => Image.empty

case n => aBox beside loop(n-1)

}

loop(count)

}

Return to the exercise

B.8 Horঞculture and Higher-order Funcঞons

B.8.1 Soluঞon to: Funcঞon Literals

The first funcঞon is

200 APPENDIX B. SOLUTIONS TO EXERCISES

(x: Int) => x * x

// res7: Int => Int = <function1>

The second is

(c: Color) => c.spin(15.degrees)

// res8: Color => Color.HSLA = <function1>

The third is

(image: Image) =>

image.beside(image.rotate(90.degrees))

.beside(image.rotate(180.degrees))

.beside(image.rotate(270.degrees))

.beside(image.rotate(360.degrees))

// res9: Image => Image = <function1>

Return to the exercise

B.8.2 Soluঞon to: Funcঞon Types

The type is Angle => Point. This means roseFn is a funcঞon that takes a single argument of type Angle and
returns a value of type Point. In other words, roseFn transforms an Angle to a Point.

Return to the exercise

B.8.3 Soluঞon to: Spirals

Here’s a type of spiral, known as a logarithmic spiral, that has a parঞcularly pleasing shape. sample it and see
for yourself!

def parametricSpiral(angle: Angle): Point =

Point((Math.exp(angle.toTurns) - 1) * 200, angle)

Return to the exercise

B.8.4 Soluঞon to: Sample

The answer is a small modificaঞon of the original sample. We drop the dot parameter and the type of the
curve parameter changes. The rest follows from this.

def sample(samples: Int, curve: Angle => Image): Image = {

val step = Angle.one / samples

def loop(count: Int): Image = {

val angle = step * count

count match {

case 0 => Image.empty

case n =>

curve(angle).on(loop(n - 1))

}

}

loop(samples)

B.8. HORTICULTURE AND HIGHER-ORDER FUNCTIONS 201

}

Return to the exercise

B.8.5 Soluঞon to: The Colour and the Shape

The simplest soluঞon is to define three singleShapes as follows:

def concentricShapes(count: Int, singleShape: Int => Image): Image =

count match {

case 0 => Image.empty

case n => singleShape(n).on(concentricShapes(n-1, singleShape))

}

def rainbowCircle(n: Int) = {

val color = Color.blue.desaturate(0.5.normalized).spin((n * 30).degrees)

val shape = Image.circle(50 + n*12)

shape.strokeWidth(10).strokeColor(color)

}

def fadingTriangle(n: Int) = {

val color = Color.blue.fadeOut((1 - n / 20.0).normalized)

val shape = Image.triangle(100 + n*24, 100 + n*24)

shape.strokeWidth(10).strokeColor(color)

}

def rainbowSquare(n: Int) = {

val color = Color.blue.desaturate(0.5.normalized).spin((n * 30).degrees)

val shape = Image.rectangle(100 + n*24, 100 + n*24)

shape.strokeWidth(10).strokeColor(color)

}

val answer =

concentricShapes(10, rainbowCircle)

.beside(

concentricShapes(10, fadingTriangle)

.beside(concentricShapes(10, rainbowSquare))

)

However, there is some redundancy here: rainbowCircle and rainbowTriangle, in parঞcular, use the same
definiঞon of color. There are also repeated calls to strokeWidth(10) and strokeColor(color) that can
be eliminated. The extra credit soluঞon factors these out into their own funcঞons and combines them with the
colored combinator:

def concentricShapes(count: Int, singleShape: Int => Image): Image =

count match {

case 0 => Image.empty

case n => singleShape(n) on concentricShapes(n-1, singleShape)

}

def colored(shape: Int => Image, color: Int => Color): Int => Image =

(n: Int) =>

shape(n).strokeWidth(10).strokeColor(color(n))

def fading(n: Int): Color =

Color.blue.fadeOut((1 - n / 20.0).normalized)

def spinning(n: Int): Color =

202 APPENDIX B. SOLUTIONS TO EXERCISES

Color.blue.desaturate(0.5.normalized).spin((n * 30).degrees)

def size(n: Int): Double =

100 + 24 * n

def circle(n: Int): Image =

Image.circle(size(n))

def square(n: Int): Image =

Image.square(size(n))

def triangle(n: Int): Image =

Image.triangle(size(n), size(n))

val answer =

concentricShapes(10, colored(circle, spinning))

.beside(

concentricShapes(10, colored(triangle, fading))

.beside(concentricShapes(10, colored(square, spinning)))

)

// answer: Image = Beside(

// On(

// StrokeColor(

// StrokeWidth(Circle(340.0), 10.0),

// HSLA(

// Angle(9.42477796076938),

// Normalized(0.5),

// Normalized(0.5),

// Normalized(1.0)

//)

//),

// On(

// StrokeColor(

// StrokeWidth(Circle(316.0), 10.0),

// HSLA(

// Angle(8.901179185171081),

// Normalized(0.5),

// Normalized(0.5),

// Normalized(1.0)

//)

//),

// On(

// StrokeColor(

// StrokeWidth(Circle(292.0), 10.0),

// HSLA(

// Angle(8.377580409572781),

// Normalized(0.5),

// Normalized(0.5),

// Normalized(1.0)

//)

//),

// On(

// StrokeColor(

// StrokeWidth(Circle(268.0), 10.0),

// HSLA(

// Angle(7.853981633974483),

// Normalized(0.5),

// Normalized(0.5),

// Normalized(1.0)

//)

B.8. HORTICULTURE AND HIGHER-ORDER FUNCTIONS 203

//),

// On(

// StrokeColor(

// StrokeWidth(Circle(244.0), 10.0),

// HSLA(

// Angle(7.330382858376184),

// Normalized(0.5),

// Normalized(0.5),

// Normalized(1.0)

// ...

Return to the exercise

B.8.6 Soluঞon to: Components

When we draw the parametric curves we probably what to change the radius of different curves. We could
abstract this into a funcঞon. What should the type of this funcঞon be? Perhaps the most obvious approach
is to have funcঞon with type (Point, Double) => Point, where the Double parameter is the amount by
which we scale the point. This is somehwat annoying to use, however. We have to conঞnually pass around the
Double, which never varies from its iniঞal seমng.

A be�er structure is to create a funcঞonwith type Double => (Point => Point). This is a funcঞon to which
we pass the scaling factor. It returns a funcঞon that transforms a Point by the given scaling factor. In this way
we separate out the fixed scaling factor. The implementaঞon could be

def scale(factor: Double): Point => Point =

(pt: Point) => {

Point.polar(pt.r * factor, pt.angle)

}

In our previous discussion we’ve said we’d like to abstract the parametric equaঞon out from sample. This we
can easily do with

def sample(start: Angle, samples: Int, location: Angle => Point): Image = {

// Angle.one is one complete turn. I.e. 360 degrees

val step = Angle.one / samples

val dot = Image.triangle(10, 10)

def loop(count: Int): Image = {

val angle = step * count

count match {

case 0 => Image.empty

case n =>

dot.at(location(angle).toVec).on(loop(n - 1))

}

}

loop(samples)

}

Wemight like to abstract out the choice of image primiঞve (dot or Image.triangle above). We could change
location to be a funcঞon Angle => Image to accomplish this.

def sample(start: Angle, samples: Int, location: Angle => Image): Image = {

// Angle.one is one complete turn. I.e. 360 degrees

val step = Angle.one / samples

def loop(count: Int): Image = {

val angle = step * count

204 APPENDIX B. SOLUTIONS TO EXERCISES

count match {

case 0 => Image.empty

case n => location(angle).on(loop(n - 1))

}

}

loop(samples)

}

We could also abstract out the enঞre problem specific part of the structural recursion. Where we had

def loop(count: Int): Image = {

val angle = step * count

count match {

case 0 => Image.empty

case n => location(angle).on(loop(n - 1))

}

}

we could abstract out the base case (Image.empty) and the problem specific part on the recursion
(location(angle) on loop(n - 1)). The former would be just an Image but the la�er is a funcঞon
with type (Angle, Image) => Image. The final result is

def sample(start: Angle, samples: Int, empty: Image, combine: (Angle, Image) => Image): Image = {

// Angle.one is one complete turn. I.e. 360 degrees

val step = Angle.one / samples

def loop(count: Int): Image = {

val angle = step * count

count match {

case 0 => empty

case n => combine(angle, loop(n - 1))

}

}

loop(samples)

}

This is a very abstract funcঞon. We don’t expect most people will see this abstracঞon, but if you’re interested
in exploring this idea more you might like to read about folds and monoids.

Return to the exercise

B.8.7 Soluঞon to: Combine

You might end up with something like.

def parametricCircle(angle: Angle): Point =

Point.cartesian(angle.cos, angle.sin)

def rose(angle: Angle): Point =

Point.cartesian((angle * 7).cos * angle.cos, (angle * 7).cos * angle.sin)

def scale(factor: Double): Point => Point =

(pt: Point) => {

Point.polar(pt.r * factor, pt.angle)

}

def sample(start: Angle, samples: Int, location: Angle => Point): Image = {

B.9. SHAPES, SEQUENCES, AND STARS 205

// Angle.one is one complete turn. I.e. 360 degrees

val step = Angle.one / samples

val dot = Image.triangle(10, 10)

def loop(count: Int): Image = {

val angle = step * count

count match {

case 0 => Image.empty

case n => dot.at(location(angle).toVec) on loop(n - 1)

}

}

loop(samples)

}

def locate(scale: Point => Point, point: Angle => Point): Angle => Point =

(angle: Angle) => scale(point(angle))

// Rose on circle

val flower = {

sample(0.degrees, 200, locate(scale(200), rose _)) on

sample(0.degrees, 40, locate(scale(150), parametricCircle _))

}

Return to the exercise

B.8.8 Soluঞon to: Experiment

Our implementaঞon used to create fig. 9.1 is at Flowers.scala. What did you come up with? Let us know! Our
email addresses are noel@underscore.io and dave@underscore.io.

Return to the exercise

B.9 Shapes, Sequences, and Stars

B.9.1 Soluঞon to: Polygons

Using polar coordinates makes it much simpler to define the locaঞon of the “corners” (verঞces) of the polygons.
Each vertex is located a fixed rotaঞon from the previous vertex, and a[er we’ve marked all verঞces we must
have done a full rotaঞon of the circle. This means, for example, that for a pentagon each vertex is (360 / 5) =
72 degrees from the previous one. If we start at 0 degrees, verঞces are located at 0, 72, 144, 216, and 288
degrees. The distance from the origin is fixed in each case. We don’t have to draw a line between the final
vertex and the start—by using a closed path this will be done for us.

Here’s our code to draw fig. 10.2, which uses this idea. In some cases we haven’t started the verঞces at 0
degrees so we can rotate the shape we draw.

import doodle.core.PathElement._

import doodle.core.Point._

import doodle.core.Color._

val triangle =

Image.closedPath(List(

moveTo(polar(50, 0.degrees)),

lineTo(polar(50, 120.degrees)),

lineTo(polar(50, 240.degrees))

))

https://github.com/underscoreio/doodle/blob/develop/shared/src/main/scala/doodle/examples/Flowers.scala

206 APPENDIX B. SOLUTIONS TO EXERCISES

val square =

Image.closedPath(List(

moveTo(polar(50, 45.degrees)),

lineTo(polar(50, 135.degrees)),

lineTo(polar(50, 225.degrees)),

lineTo(polar(50, 315.degrees))

))

val pentagon =

Image.closedPath(List(

moveTo(polar(50, 72.degrees)),

lineTo(polar(50, 144.degrees)),

lineTo(polar(50, 216.degrees)),

lineTo(polar(50, 288.degrees)),

lineTo(polar(50, 360.degrees))

))

val spacer =

Image.rectangle(10, 100).noStroke.noFill

def style(image: Image): Image =

image.strokeWidth(6.0).strokeColor(paleTurquoise).fillColor(turquoise)

val image =

style(triangle).beside(spacer).beside(style(square)).beside(spacer).beside(style(pentagon))

Return to the exercise

B.9.2 Soluঞon to: Curves

The core of the exercise is to replace the lineTo expressions with curveTo. We can generalise curve creaঞon
into a method that takes the starঞng angle and the angle increment, and constructs control points at predeter-
mined points along the rotaঞon. This is what we did in the method curve below, and it gives us consistent
looking curves without having to manually repeat the calculaঞons each ঞme. Making this generalisaঞon also
makes it easier to play around with different control points to create different outcomes.

import doodle.core.Point._

import doodle.core.PathElement._

import doodle.core.Color._

def curve(radius: Int, start: Angle, increment: Angle): PathElement = {

curveTo(

polar(radius * .8, start + (increment * .3)),

polar(radius * 1.2, start + (increment * .6)),

polar(radius, start + increment)

)

}

val triangle =

Image.closedPath(List(

moveTo(polar(50, 0.degrees)),

curve(50, 0.degrees, 120.degrees),

curve(50, 120.degrees, 120.degrees),

curve(50, 240.degrees, 120.degrees)

))

val square =

B.9. SHAPES, SEQUENCES, AND STARS 207

Image.closedPath(List(

moveTo(polar(50, 45.degrees)),

curve(50, 45.degrees, 90.degrees),

curve(50, 135.degrees, 90.degrees),

curve(50, 225.degrees, 90.degrees),

curve(50, 315.degrees, 90.degrees)

))

val pentagon =

Image.closedPath((List(

moveTo(polar(50, 72.degrees)),

curve(50, 72.degrees, 72.degrees),

curve(50, 144.degrees, 72.degrees),

curve(50, 216.degrees, 72.degrees),

curve(50, 288.degrees, 72.degrees),

curve(50, 360.degrees, 72.degrees)

)))

val spacer =

Image.rectangle(10, 100).noStroke.noFill

def style(image: Image): Image =

image.strokeWidth(6.0).strokeColor(paleTurquoise).fillColor(turquoise)

val image = style(triangle).beside(spacer).beside(style(square)).beside(spacer).beside(style(

pentagon))

Return to the exercise

B.9.3 Soluঞon to: Building Lists

It’s structural recursion over the natural numbers!

def ones(n: Int): List[Int] =

n match {

case 0 => Nil

case n => 1 :: ones(n - 1)

}

ones(3)

// res7: List[Int] = List(1, 1, 1)

Return to the exercise

B.9.4 Soluঞon to: Building Lists Part 2

Once more, we can employ structural recursion over the natural numbers.

def descending(n: Int): List[Int] =

n match {

case 0 => Nil

case n => n :: descending(n - 1)

}

descending(0)

// res11: List[Int] = List()

descending(3)

208 APPENDIX B. SOLUTIONS TO EXERCISES

// res12: List[Int] = List(3, 2, 1)

Return to the exercise

B.9.5 Soluঞon to: Building Lists Part 3

It’s structural recursion over the natural numbers, but this ঞme with an internal accumulator.

def ascending(n: Int): List[Int] = {

def iter(n: Int, counter: Int): List[Int] =

n match {

case 0 => Nil

case n => counter :: iter(n - 1, counter + 1)

}

iter(n, 1)

}

ascending(0)

// res16: List[Int] = List()

ascending(3)

// res17: List[Int] = List(1, 2, 3)

Return to the exercise

B.9.6 Soluঞon to: Building Lists Part 4

In this exercise we’re asking you to use a type variable. Otherwise it is the same pa�ern as before.

def fill[A](n: Int, a: A): List[A] =

n match {

case 0 => Nil

case n => a :: fill(n-1, a)

}

fill(3, "Hi")

// res21: List[String] = List("Hi", "Hi", "Hi")

fill(3, Color.blue)

// res22: List[Color] = List(

// RGBA(

// UnsignedByte(-128),

// UnsignedByte(-128),

// UnsignedByte(127),

// Normalized(1.0)

//),

// RGBA(

// UnsignedByte(-128),

// UnsignedByte(-128),

// UnsignedByte(127),

// Normalized(1.0)

//),

// RGBA(

// UnsignedByte(-128),

// UnsignedByte(-128),

// UnsignedByte(127),

// Normalized(1.0)

//)

B.9. SHAPES, SEQUENCES, AND STARS 209

//)

Return to the exercise

B.9.7 Soluঞon to: Transforming Lists

This is a structural recursion over a list, building a list at each step. The destructuring of the input is mirrored
by the construcঞon of the output.

def double(list: List[Int]): List[Int] =

list match {

case Nil => Nil

case hd :: tl => (hd * 2) :: double(tl)

}

double(List(1, 2, 3))

// res26: List[Int] = List(2, 4, 6)

double(List(4, 9, 16))

// res27: List[Int] = List(8, 18, 32)

Return to the exercise

B.9.8 Soluঞon to: Transforming Lists Part 2

This is a structural recursion over a list using the same pa�ern as sum in the examples above.

def product(list: List[Int]): Int =

list match {

case Nil => 1

case hd :: tl => hd * product(tl)

}

product(Nil)

// res31: Int = 1

product(List(1,2,3))

// res32: Int = 6

Return to the exercise

B.9.9 Soluঞon to: Transforming Lists Part 3

Same pa�ern as before, but using a type variable to allow type of the elements to vary.

def contains[A](list: List[A], elt: A): Boolean =

list match {

case Nil => false

case hd :: tl => (hd == elt) || contains(tl, elt)

}

contains(List(1,2,3), 3)

// res36: Boolean = true

contains(List("one", "two", "three"), "four")

// res37: Boolean = false

210 APPENDIX B. SOLUTIONS TO EXERCISES

Return to the exercise

B.9.10 Soluঞon to: Transforming Lists Part 4

This method is similar to contains above, except we now use the type variable in the return type as well as in
the parameter types.

def first[A](list: List[A], elt: A): A =

list match {

case Nil => elt

case hd :: tl => hd

}

first(Nil, 4)

// res41: Int = 4

first(List(1,2,3), 4)

// res42: Int = 1

Return to the exercise

B.9.11 Soluঞon to: Challenge Exercise: Reverse

The trick here is to use an accumulator to hold the parঞally reversed list. If you managed to work this one out,
congratulaঞons—you really understand structural recursion well!

def reverse[A](list: List[A]): List[A] = {

def iter(list: List[A], reversed: List[A]): List[A] =

list match {

case Nil => reversed

case hd :: tl => iter(tl, hd :: reversed)

}

iter(list, Nil)

}

reverse(List(1, 2, 3))

// res46: List[Int] = List(3, 2, 1)

reverse(List("a", "b", "c"))

// res47: List[String] = List("c", "b", "a")

Return to the exercise

B.9.12 Soluঞon to: Polygons!

Here’s our code. Note how we factored the code into small components—though we could have taken the
factoring further is we wanted to. (Can you see how? Hint: do we need to pass, say, start to every call of
makeColor when it’s not changing?)

import Point._

import PathElement._

def polygon(sides: Int, size: Int, initialRotation: Angle): Image = {

def iter(n: Int, rotation: Angle): List[PathElement] =

n match {

B.9. SHAPES, SEQUENCES, AND STARS 211

case 0 =>

Nil

case n =>

LineTo(polar(size, rotation * n + initialRotation)) :: iter(n - 1, rotation)

}

Image.closedPath(moveTo(polar(size, initialRotation)) :: iter(sides, 360.degrees / sides))

}

def style(img: Image): Image = {

img.

strokeWidth(3.0).

strokeColor(Color.mediumVioletRed).

fillColor(Color.paleVioletRed.fadeOut(0.5.normalized))

}

def makeShape(n: Int, increment: Int): Image =

polygon(n+2, n * increment, 0.degrees)

def makeColor(n: Int, spin: Angle, start: Color): Color =

start.spin(spin * n)

val baseColor = Color.hsl(0.degrees, 0.7, 0.7)

def makeImage(n: Int): Image = {

n match {

case 0 =>

Image.empty

case n =>

val shape = makeShape(n, 10)

val color = makeColor(n, 30.degrees, baseColor)

makeImage(n-1).on(shape.fillColor(color))

}

}

val image = makeImage(15)

Return to the exercise

B.9.13 Soluঞon to: Ranges, Lists, and map

We can just map over a Range to achieve this.

def ones(n: Int): List[Int] =

(0 until n).toList.map(x => 1)

ones(3)

// res20: List[Int] = List(1, 1, 1)

Return to the exercise

B.9.14 Soluঞon to: Ranges, Lists, and map Part 2

We can use a Range but we have to set the step size or the range will be empty.

212 APPENDIX B. SOLUTIONS TO EXERCISES

def descending(n: Int): List[Int] =

(n until 0 by -1).toList

descending(0)

// res24: List[Int] = List()

descending(3)

// res25: List[Int] = List(3, 2, 1)

Return to the exercise

B.9.15 Soluঞon to: Ranges, Lists, and map Part 3

Again we can use a Range but we need to take care to start at 0 and increment the elements by 1 so we have
the correct number of elements.

def ascending(n: Int): List[Int] =

(0 until n).toList.map(x => x + 1)

ascending(0)

// res29: List[Int] = List()

ascending(3)

// res30: List[Int] = List(1, 2, 3)

Return to the exercise

B.9.16 Soluঞon to: Ranges, Lists, and map Part 4

This is a straigh�orward applicaঞon of map.

def double(list: List[Int]): List[Int] =

list map (x => x * 2)

double(List(1, 2, 3))

// res34: List[Int] = List(2, 4, 6)

double(List(4, 9, 16))

// res35: List[Int] = List(8, 18, 32)

Return to the exercise

B.9.17 Soluঞon to: Polygons, Again!

Here’s one possible implementaঞon. Much easier to read than the previous implementaঞon!

def polygon(sides: Int, size: Int, initialRotation: Angle): Image = {

import Point._

import PathElement._

val step = (Angle.one / sides).toDegrees.toInt

val path =

(0 to 360 by step).toList.map{ deg =>

lineTo(polar(size, initialRotation + deg.degrees))

}

B.9. SHAPES, SEQUENCES, AND STARS 213

Image.closedPath(moveTo(polar(size, initialRotation)) :: path)

}

Return to the exercise

B.9.18 Soluঞon to: Challenge Exercise: Beyond Map

We’ve seen many examples that we cannot implement with map: the methods product, sum, find, and more
in the previous secঞon cannot be implemented with map.

In abstract, methods implemented with map obey the following equaঞon:

List[A] map A => B = List[B]

If the result is not of type List[B] we cannot implement it with map. For example, methods like product and
sum transform List[Int] to Int and so cannot be implemented with map.

Map transforms the elements of a list, but cannot change the number of elements in the result. Even if a
method fits the equaঞon for map above it cannot be implemented with map if it requires changing the number
of elements in the list.

Return to the exercise

B.9.19 Soluঞon to: Using Open Intervals

Now that we now about to this is trivial to implement.

def ascending(n: Int): List[Int] =

(1 to n).toList

ascending(0)

// res42: List[Int] = List()

ascending(3)

// res43: List[Int] = List(1, 2, 3)

Return to the exercise

B.9.20 Soluঞon to: My God, It’s Full of Stars!

Here’s the star method. We’ve renamed p and n to points and skip for clarity:

def star(sides: Int, skip: Int, radius: Double): Image = {

import Point._

import PathElement._

val rotation = 360.degrees * skip / sides

val start = moveTo(polar(radius, 0.degrees))

val elements = (1 until sides).toList map { index =>

val point = polar(radius, rotation * index)

lineTo(point)

}

214 APPENDIX B. SOLUTIONS TO EXERCISES

Image.closedPath(start :: elements) strokeWidth 2

}

Return to the exercise

B.9.21 Soluঞon to: My God, It’s Full of Stars! Part 2

We can use the structural recursion skeleton to write this method.

We start with

def allBeside(images: List[Image]): Image =

images match {

case Nil => ???

case hd :: tl => ???

}

Remembering the recursion gives us

def allBeside(images: List[Image]): Image =

images match {

case Nil => ???

case hd :: tl => /* something here */ allBeside(tl)

}

Finally we can fill in the base and recursive cases.

def allBeside(images: List[Image]): Image =

images match {

case Nil => Image.empty

case hd :: tl => hd.beside(allBeside(tl))

}

Return to the exercise

B.9.22 Soluঞon to: My God, It’s Full of Stars! Part 3

To create the image in fig. ?? we started by creaঞng a method to style a star.

def style(img: Image, hue: Angle): Image = {

img.

strokeColor(Color.hsl(hue, 1.0, 0.25)).

fillColor(Color.hsl(hue, 1.0, 0.75))

}

We then created allAbove, which you will noঞce is very similar to allBeside (wouldn’t it be nice if we could
abstract this pa�ern?)

def allAbove(imgs: List[Image]): Image =

imgs match {

case Nil => Image.empty

case hd :: tl => hd above allAbove(tl)

}

The updated scene then becomes:

B.10. TURTLE ALGEBRA AND ALGEBRAIC DATA TYPES 215

allAbove((3 to 33 by 2).toList map { sides =>

allBeside((1 to sides/2).toList map { skip =>

style(star(sides, skip, 20), 360.degrees * skip / sides)

})

})

Return to the exercise

B.10 Turtle Algebra and Algebraic Data Types

B.10.1 Soluঞon to: Polygons

Here’s our soluঞon. It’s a structural recursion over the natural numbers. The turn angle is exactly the same as
the rotaঞon angle used to create polygons in polar coordinates in the previous chapter, though the derivaঞon
is quite different.

def polygon(sides: Int, sideLength: Double): Image = {

val rotation = Angle.one / sides

def iter(n: Int): List[Instruction] =

n match {

case 0 => Nil

case n => turn(rotation) :: forward(sideLength) :: iter(n-1)

}

Turtle.draw(iter(sides))

}

Return to the exercise

B.10.2 Soluঞon to: The Square Spiral

The key insights to draw the square spiral are realising:

• each turn is a li�le bit less than 90 degrees
• each step forward is a li�le bit longer than the last one

Once we have this understood this, the structure is basically the same as drawing a polyon. Here’s our soluঞon.

def squareSpiral(steps: Int, distance: Double, angle: Angle, increment: Double): Image = {

def iter(n: Int, distance: Double): List[Instruction] = {

n match {

case 0 => Nil

case n => forward(distance) :: turn(angle) :: iter(steps-1, distance + increment)

}

}

Turtle.draw(iter(steps, distance))

}

Return to the exercise

216 APPENDIX B. SOLUTIONS TO EXERCISES

B.10.3 Soluঞon to: Turtles vs Polar Coordinates

Each side of the polygon requires two turtle instrucঞons: a forward and a turn. Thus drawing a pentagon
requires ten instrucঞons, and in general n sides requires 2n instrucঞons. Using map we cannot change the
number of elements in a list. Therefore mapping 1 to n, as we did int the code above, won’t work. We could
map over 1 to (n*2), and on, say, odd numbers move forward and on even numbers turn, but this is rather
inelegant. It seems it would be simpler if we had an abstracঞon like map that allowed us to change the number
of elements in the list as well as transform the individual elements.

Return to the exercise

B.10.4 Soluঞon to: Branching Structures

In this case map is not the right soluঞon, as the types tell us. Remember the type equaঞon for map is

List[A] map (A => B) = List[B]

If - we have List[Instruction]; and - we map a funcঞon Instruction => List[Instruction]; then -
we’ll get a List[List[Instruction]]

as we can see from the type equaঞon.

Our turtle doesn’t know how to draw List[List[Instruction]] so this won’t work.

Return to the exercise

B.10.5 Soluঞon to: Double

There are two points to this:

• recognising how to use flatMap; and
• remembering how to use type variables.

def double[A](in: List[A]): List[A] =

in.flatMap { x => List(x, x) }

Return to the exercise

B.10.6 Soluঞon to: Or Nothing

We could easily write this method as

def nothing[A](in: List[A]): List[A] =

List() // or List.empty or Nil

but the point of this exercise is to get more familiarity with using flatMap. With flatMap we can write the
method as

def nothing[A](in: List[A]): List[A] =

in.flatMap { x => List.empty }

Return to the exercise

B.10. TURTLE ALGEBRA AND ALGEBRAIC DATA TYPES 217

B.10.7 Soluঞon to: Rewriঞng the Rules

There are two parts to this:

• recognising that we need to use flatMap, for reasons discussed above; and
• realising that we need to recursively call rewrite to process the contents of a branch.

The la�er is an example of structural recursion, though a slighlty more complex pa�ern than we’ve seen before.

def rewrite(instructions: List[Instruction], rule: Instruction => List[Instruction]): List[

Instruction] =

instructions.flatMap { i =>

i match {

case Branch(i) =>

List(branch(rewrite(i, rule):_*))

case other =>

rule(other)

}

}

Return to the exercise

B.10.8 Soluঞon to: Your Own L-System

This is just a simple structural recursion of the natural numbers, with all the hard work done by rewrite.

def iterate(steps: Int,

seed: List[Instruction],

rule: Instruction => List[Instruction]): List[Instruction] =

steps match {

case 0 => seed

case n => iterate(n - 1, rewrite(seed, rule), rule)

}

Return to the exercise

B.10.9 Soluঞon to: Flat Polygon

Using flatMapwe canmake the code more compact than the explicit structural recursion we had to use before.

def polygon(sides: Int, sideLength: Double): Image = {

val rotation = Angle.one / sides

Turtle.draw((1 to sides).toList.flatMap { n =>

List(turn(rotation), forward(sideLength))

})

}

Return to the exercise

218 APPENDIX B. SOLUTIONS TO EXERCISES

B.10.10 Soluঞon to: Flat Spiral

Again, the result is more compact than the previous implementaঞon without flatMap. Isthis easier to read?
I find it about the same. I belive comprehensibility is a funcঞon of familiarity, and we’re (hopefully) by now
becoming familiar with flatMap.

def squareSpiral(steps: Int, distance: Double, angle: Angle, increment: Double): Image = {

Turtle.draw((1 to steps).toList.flatMap { n =>

List(forward(distance + (n * increment)), turn(angle))

})

}

Return to the exercise

B.11 Composiঞon of Generaঞve Art

B.11.1 Soluঞon to: Generaঞve Art

Generaঞng random numbers in this way breaks subsঞtuঞon. Remember subsঞtuঞon says wherever we see
an expression we should be able to subsঞtute the value it evaluates to without changing the meaning of the
program. Concretely, this means

val result1 = randomAngle

// result1: Angle = Angle(3.1284665815466974)

val result2 = randomAngle

// result2: Angle = Angle(1.4307100761881815)

and

val result1 = randomAngle

// result1: Angle = Angle(2.772262271097978)

val result2 = result1

// result2: Angle = Angle(2.772262271097978)

should be the same program and clearly they are not.

Return to the exercise

B.11.2 Soluঞon to: Randomness and Randomness

programOne displays three different circles in a row, while programTwo repeats the same circle three ঞmes. The
value circles represents a program that generates an image of randomly colored concentric circles. Remember
map represents a determinisঞc transform, so the output of programTwomust be the same same circle repeated
thrice as we’re not introducing new random choices. In programOne we merge circle with itself three ঞmes.
Youmight think that the output should be only one random image repeated three ঞmes, not three, but remember
Random preserves subsঞtuঞon. We can write programOne equivalently as

val programOneRewritten =

randomConcentricCircles(5, 10) flatMap { c1 =>

randomConcentricCircles(5, 10) flatMap { c2 =>

randomConcentricCircles(5, 10) map { c3 =>

c1 beside c2 beside c3

}

}

B.11. COMPOSITION OF GENERATIVE ART 219

}

// programOneRewritten: cats.free.Free[RandomOp, Image] = FlatMapped(

// FlatMapped(

// FlatMapped(

// FlatMapped(

// FlatMapped(

// Suspend(RDouble),

// cats.free.Free$$Lambda$9668/2041403374@24f4d3ce

//),

// cats.free.Free$$Lambda$9668/2041403374@1c1e1241

//),

// cats.free.Free$$Lambda$9668/2041403374@1f52079a

//),

// <function1>

//),

// <function1>

//)

which makes it clearer that we’re generaঞng three different circles.

Return to the exercise

B.11.3 Soluঞon to: Colored Boxes

This code uses exactly the same pa�ern as randomConcentricCircles.

val randomAngle: Random[Angle] =

Random.double.map(x => x.turns)

// randomAngle: Random[Angle] = FlatMapped(

// Suspend(RDouble),

// cats.free.Free$$Lambda$9668/2041403374@16228f6f

//)

val randomColor: Random[Color] =

randomAngle.map(hue => Color.hsl(hue, 0.7, 0.7))

// randomColor: Random[Color] = FlatMapped(

// FlatMapped(Suspend(RDouble), cats.free.Free$$Lambda$9668/2041403374@16228f6f),

// cats.free.Free$$Lambda$9668/2041403374@14ca54c6

//)

def coloredRectangle(color: Color): Image =

Image.rectangle(20, 20).fillColor(color)

def randomColorBoxes(count: Int): Random[Image] =

count match {

case 0 => randomColor.map{ c => coloredRectangle(c) }

case n =>

val box = randomColor.map{ c => coloredRectangle(c) }

val boxes = randomColorBoxes(n-1)

box.flatMap{ b =>

boxes.map{ bs => b.beside(bs) }

}

}

Return to the exercise

220 APPENDIX B. SOLUTIONS TO EXERCISES

B.11.4 Soluঞon to: Parঞcle Systems

This will do. You can create a more complicated (and interesঞng) distribuঞon over starঞng posiঞon if you want.

val start = Random.always(Point.zero)

Return to the exercise

B.11.5 Soluঞon to: Parঞcle Systems Part 2

I’ve chosen to use normally distributed noise that is the same in both direcঞons. Changing the noise will change
the shape of the result—it’s worth playing around with different seমngs.

def step(current: Point): Random[Point] = {

val drift = Point(current.x + 10, current.y)

val noise =

Random.normal(0.0, 5.0) flatMap { x =>

Random.normal(0.0, 5.0) map { y =>

Vec(x, y)

}

}

noise.map(vec => drift + vec)

}

Return to the exercise

B.11.6 Soluঞon to: Parঞcle Systems Part 3

In my definiঞon of render I’ve shown how we can use informaঞon from the point to modify the shape in an
interesঞng way.

The definiঞon of walk is a structural recursion over the natural numbers with an internal accumulator and the
recursion going through flatMap.

def render(point: Point): Image = {

val length = (point - Point.zero).length

val sides = (length / 20).toInt + 3

val hue = (length / 200).turns

val color = Color.hsl(hue, 0.7, 0.5)

Image

.star(sides, 5, 3, 0.degrees)

.noFill

.strokeColor(color)

.at(point.toVec)

}

def walk(steps: Int): Random[Image] = {

def loop(count: Int, current: Point, image: Image): Random[Image] = {

count match {

case 0 => Random.always(image on render(current))

case n =>

val next = step(current)

next.flatMap{ pt =>

loop(count - 1, pt, image on render(current))

}

B.11. COMPOSITION OF GENERATIVE ART 221

}

}

start.flatMap{ pt => loop(steps, pt, Image.empty) }

}

Return to the exercise

B.11.7 Soluঞon to: Parঞcle Systems Part 4

Once again we have a structural recursion over the natural numbers. Unlike walk the recursion goes through
map, not flatMap. This is because particleSystem adds no new random choices.

def particleSystem(particles: Int, steps: Int): Random[Image] = {

particles match {

case 0 => Random.always(Image.empty)

case n => walk(steps).flatMap{ img1 =>

particleSystem(n-1, steps) map { img2 =>

img1 on img2

}

}

}

}

Return to the exercise

B.11.8 Soluঞon to: Random Abstracঞons

We could make walk start, and render parameters to particleSystem, and make start and render pa-
rameters to walk.

Return to the exercise

B.11.9 Soluঞon to: Random Abstracঞons Part 2

If we add parameters with the correct name and type the code changes required are minimal. This is like doing
the opposite of subsঞtuঞon—li[ing concrete representaঞons out of our code and replacing them with method
parameters.

def walk(

steps: Int,

start: Random[Point],

render: Point => Image

): Random[Image] = {

def loop(count: Int, current: Point, image: Image): Random[Image] = {

count match {

case 0 => Random.always(image on render(current))

case n =>

val next = step(current)

next.flatMap{ pt =>

loop(count - 1, pt, image on render(current))

}

}

}

222 APPENDIX B. SOLUTIONS TO EXERCISES

start.flatMap{ pt => loop(steps, pt, Image.empty) }

}

def particleSystem(

particles: Int,

steps: Int,

start: Random[Point],

render: Point => Image,

walk: (Int, Random[Point], Point => Image) => Random[Image]

): Random[Image] = {

particles match {

case 0 => Random.always(Image.empty)

case n => walk(steps, start, render).flatMap{ img1 =>

particleSystem(n-1, steps, start, render, walk).map{ img2 =>

img1.on(img2)

}

}

}

}

Return to the exercise

B.11.10 Soluঞon to: Sca�er Plots

This is a nice example of composiঞon of Randoms.

def makePoint(x: Random[Double], y: Random[Double]): Random[Point] =

for {

theX <- x

theY <- y

} yield Point.cartesian(theX, theY)

Return to the exercise

B.11.11 Soluঞon to: Sca�er Plots Part 2

Something like the following should work.

val normal = Random.normal(50, 15)

val normal2D = makePoint(normal, normal)

val data = (1 to 1000).toList.map(_ => normal2D)

Return to the exercise

B.11.12 Soluঞon to: Sca�er Plots Part 3

We can convert a Point to an Image using amethod point below. Note I’vemade each point on the sca�erplot
quite transparent—this makes it easier to see where a lot of points are grouped together.

def point(loc: Point): Image =

Image.circle(2).fillColor(Color.cadetBlue.alpha(0.3.normalized)).noStroke.at(loc.toVec)

Converঞng between the lists is just a ma�er of calling map a few ঞmes.

B.11. COMPOSITION OF GENERATIVE ART 223

val points = data.map(r => r.map(point _))

Return to the exercise

B.11.13 Soluঞon to: Sca�er Plots Part 4

You might recognise this pa�ern. It’s what we used in allOn with the addiঞon of flatMap, which is exactly
what randomConcentricCircles (and many other examples) use.

def allOn(points: List[Random[Image]]): Random[Image] =

points match {

case Nil => Random.always(Image.empty)

case img :: imgs =>

for {

i <- img

is <- allOn(imgs)

} yield (i on is)

}

Return to the exercise

B.11.14 Soluঞon to: Sca�er Plots Part 5

This is just calling methods and using values we’ve already defined.

val plot = allOn(points)

Return to the exercise

B.11.15 Soluঞon to: Parametric Noise

Here’s our soluঞon. We’ve already seen very similar code in the sca�er plot.

def perturb(point: Point): Random[Point] =

for {

x <- Random.normal(0, 10)

y <- Random.normal(0, 10)

} yield Point.cartesian(point.x + x, point.y + y)

Return to the exercise

B.11.16 Soluঞon to: Parametric Noise Part 2

Wriঞng this with andThen is nice and neat.

def perturbedRose(k: Int): Angle => Random[Point] =

rose(k) andThen perturb

Return to the exercise

224 APPENDIX B. SOLUTIONS TO EXERCISES

B.11.17 Soluঞon to: Parametric Noise Part 3

Here’s the code we used to create [#fig:generaঞve:volcano]. It’s quite a bit larger than code we’ve seen up to
this point, but you should understand all the components this code is built from.

object ParametricNoise {

def rose(k: Int): Angle => Point =

(angle: Angle) => {

Point.cartesian((angle * k).cos * angle.cos, (angle * k).cos * angle.sin)

}

def scale(factor: Double): Point => Point =

(pt: Point) => {

Point.polar(pt.r * factor, pt.angle)

}

def perturb(point: Point): Random[Point] =

for {

x <- Random.normal(0, 10)

y <- Random.normal(0, 10)

} yield Point.cartesian(point.x + x, point.y + y)

def smoke(r: Normalized): Random[Image] = {

val alpha = Random.normal(0.5, 0.1)

val hue = Random.double.map(h => (h * 0.1).turns)

val saturation = Random.double.map(s => s * 0.8)

val lightness = Random.normal(0.4, 0.1)

val color =

for {

h <- hue

s <- saturation

l <- lightness

a <- alpha

} yield Color.hsla(h, s, l, a)

val c = Random.normal(5, 5) map (r => Image.circle(r))

for {

circle <- c

line <- color

} yield circle.strokeColor(line).noFill

}

def point(

position: Angle => Point,

scale: Point => Point,

perturb: Point => Random[Point],

image: Normalized => Random[Image],

rotation: Angle

): Angle => Random[Image] = {

(angle: Angle) => {

val pt = position(angle)

val scaledPt = scale(pt)

val perturbed = perturb(scaledPt)

val r = pt.r.normalized

val img = image(r)

for {

i <- img

pt <- perturbed

B.12. ALGEBRAIC DATA TYPES TO CALL OUR OWN 225

} yield (i at pt.toVec.rotate(rotation))

}

}

def iterate(step: Angle): (Angle => Random[Image]) => Random[Image] = {

(point: Angle => Random[Image]) => {

def iter(angle: Angle): Random[Image] = {

if(angle > Angle.one)

Random.always(Image.empty)

else

for {

p <- point(angle)

ps <- iter(angle + step)

} yield (p on ps)

}

iter(Angle.zero)

}

}

val image: Random[Image] = {

val pts =

for(i <- 28 to 360 by 39) yield {

iterate(1.degrees){

point(

rose(5),

scale(i),

perturb _,

smoke _,

i.degrees

)

}

}

val picture = pts.foldLeft(Random.always(Image.empty)){ (accum, img) =>

for {

a <- accum

i <- img

} yield (a on i)

}

val background = (Image.rectangle(650, 650).fillColor(Color.black))

picture map { _ on background }

}

}

Return to the exercise

B.12 Algebraic Data Types To Call Our Own

B.12.1 Soluঞon to: Path Elements

A PathElement is a sum type, as it is: - a MoveTo; or - a LineTo; or - a CurveTo.

A MoveTo is a product type that holds a single point (where to move to).

A LineTo is a product type that holds a single point (the end point of the line).

A CurveTo is a product type that holds three points: two control points and the end point of the line.

Return to the exercise

226 APPENDIX B. SOLUTIONS TO EXERCISES

B.12.2 Soluঞon to: Totally Turtles

An Instruction is: - a Forward; or - a Turn; or - a Branch; or - a NoOp

Therefore Instruction is a sum type. Forward, Turn, and Branch are all product types.

A Forward holds a distance, which is a Double.

A Turn holds an angle, which is an Angle.

A Branch holds a List[Instruction]—therefore the Instruction type is defined in terms of itself, just like
List.

A NoOp holds no data.

Return to the exercise

B.12.3 Soluঞon to: Exercise

We can directly turn the textual descripঞon into code using the pa�erns above.

sealed abstract class Instruction extends Product with Serializable

final case class Forward(distance: Double) extends Instruction

final case class Turn(angle: Angle) extends Instruction

final case class Branch(instructions: List[Instruction]) extends Instruction

final case class NoOp() extends Instruction

Return to the exercise

B.12.4 Soluঞon to: Build Your Own Turtle

This is a product type.

final case class TurtleState(at: Vec, heading: Angle)

Return to the exercise

B.12.5 Soluঞon to: Build Your Own Turtle Part 2

The core pa�ern is a structural recursion but the details are a bit more intricate in this case than we’ve seen
before. We need to both create the path elements and update the state.

def process(state: TurtleState, instruction: Instruction): (TurtleState, List[PathElement]) = {

import PathElement._

instruction match {

case Forward(d) =>

val nowAt = state.at + Vec.polar(d, state.heading)

val element = lineTo(nowAt.toPoint)

(state.copy(at = nowAt), List(element))

case Turn(a) =>

val nowHeading = state.heading + a

(state.copy(heading = nowHeading), List())

case Branch(i) =>

// Ignoring for now

B.12. ALGEBRAIC DATA TYPES TO CALL OUR OWN 227

(state, List())

case NoOp() =>

(state, List())

}

}

Return to the exercise

B.12.6 Soluঞon to: Build Your Own Turtle Part 3
def iterate(state: TurtleState, instructions: List[Instruction]): List[PathElement] =

instructions match {

case Nil =>

Nil

case i :: is =>

val (newState, elements) = process(state, i)

elements ++ iterate(newState, is)

}

Return to the exercise

B.12.7 Soluঞon to: Build Your Own Turtle Part 4

Here’s the complete turtle.

object Turtle {

import Image._

def draw(instructions: List[Instruction]): Image = {

def iterate(state: TurtleState, instructions: List[Instruction]): List[PathElement] =

instructions match {

case Nil =>

Nil

case i :: is =>

val (newState, elements) = process(state, i)

elements ++ iterate(newState, is)

}

def process(state: TurtleState, instruction: Instruction): (TurtleState, List[PathElement]) = {

import PathElement._

instruction match {

case Forward(d) =>

val nowAt = state.at + Vec.polar(d, state.heading)

val element = lineTo(nowAt.toPoint)

(state.copy(at = nowAt), List(element))

case Turn(a) =>

val nowHeading = state.heading + a

(state.copy(heading = nowHeading), List())

case Branch(is) =>

val branchedElements = iterate(state, is)

(state, moveTo(state.at.toPoint) :: branchedElements)

case NoOp() =>

(state, List())

228 APPENDIX B. SOLUTIONS TO EXERCISES

}

}

openPath(iterate(TurtleState(Vec.zero, Angle.zero), instructions))

}

}

Return to the exercise

	Foreword
	Notes on the Early Access Edition
	Acknowledgements

	Getting Started
	Installing Terminal Software and a Text Editors
	IntelliJ
	Background
	GitHub

	Expressions, Values, and Types
	Literal Expressions
	Values are Objects
	Types
	Exercises

	Computing With Pictures
	Images
	Layout
	Color
	Creating Colors
	Exercises

	Writing Larger Programs
	Working Within the Console
	Coding Outside the Console
	Names
	Abstraction
	Packages and Imports

	The Substitution Model of Evaluation
	Substitution
	Order of Evaluation
	Local Reasoning

	Methods
	Methods
	Method Syntax
	Method Semantics
	Conclusions

	Structural Recursion
	A Line of Boxes
	Match Expressions
	The Natural Numbers
	Structural Recursion
	Reasoning about Recursion
	Conclusions

	Fractals
	The Chessboard
	Sierpinkski Triangle
	Auxiliary Parameters
	Nested Methods
	Exercises

	Horticulture and Higher-order Functions
	Functions
	Parametric Curves
	Points
	Flexible Layout
	Geometry
	Putting It All Together
	Flowers and Other Curves
	Higher Order Methods and Functions
	Exercises
	Conclusions

	Shapes, Sequences, and Stars
	Paths
	Working with Lists
	Transforming Sequences
	My God, It's Full of Stars!

	Animation and Fireworks
	Reactors
	Easing Functions

	Turtle Algebra and Algebraic Data Types
	Turtle Graphics
	Controlling the Turtle
	Branching Structures
	Exercises

	Composition of Generative Art
	Generative Art
	Randomness without Effect
	Combining Random Values
	Exploring Random
	For Comprehensions
	Exercises

	Algebraic Data Types To Call Our Own
	Algebraic Data Types
	Build Your Own Turtle

	Summary
	Representations and Interpreters
	Abstraction
	Composition
	Expression-Oriented Programming
	Types are a Safety Net
	Functions as Values
	Final Words
	Next Steps

	Syntax Quick Reference
	Literals and Expressions
	Value and Method Declarations
	Functions as Values
	Doodle Reference Guide

	Solutions to Exercises
	Expressions, Values, and Types
	Computing With Pictures
	Writing Larger Programs
	The Substitution Model of Evaluation
	Methods
	Structural Recursion
	Fractals
	Horticulture and Higher-order Functions
	Shapes, Sequences, and Stars
	Turtle Algebra and Algebraic Data Types
	Composition of Generative Art
	Algebraic Data Types To Call Our Own

