o

# Parametric 

### Companion trait Parametric

#### object Parametric

A collection of parametric curves.

A parametric curve is a function from some input---usually a normalized number or an angle---to a `Point`.

Linear Supertypes
AnyRef, Any
Ordering
1. Alphabetic
2. By Inheritance
Inherited
1. Parametric
2. AnyRef
3. Any
1. Hide All
2. Show All
Visibility
1. Public
2. All

### Type Members

1. final case class AngularCurve(f: (Angle) ⇒ Point) extends Parametric[Angle] with Product with Serializable

A parametric curve that maps angles to points

2. final case class NormalizedCurve(f: (Normalized) ⇒ Point) extends Parametric[Normalized] with Product with Serializable

A parametric curve that maps normalized to points

### Value Members

1. final def !=(arg0: Any): Boolean
Definition Classes
AnyRef → Any
2. final def ##(): Int
Definition Classes
AnyRef → Any
3. final def ==(arg0: Any): Boolean
Definition Classes
AnyRef → Any
4. final def asInstanceOf[T0]: T0
Definition Classes
Any
5. def circle(radius: Double)

A circle

6. def clone(): AnyRef
Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@native() @HotSpotIntrinsicCandidate() @throws( ... )
7. def cubicBezier(start: Point, cp1: Point, cp2: Point, end: Point)
8. final def eq(arg0: AnyRef): Boolean
Definition Classes
AnyRef
9. def equals(arg0: Any): Boolean
Definition Classes
AnyRef → Any
10. final def getClass(): Class[_]
Definition Classes
AnyRef → Any
Annotations
@native() @HotSpotIntrinsicCandidate()
11. def hashCode(): Int
Definition Classes
AnyRef → Any
Annotations
@native() @HotSpotIntrinsicCandidate()
12. def hypotrochoid(outerRadius: Double, innerRadius: Double, offset: Double)

A hypotrochoid is the curve sketched out by a point `offset` from the centre of a circle of radius `innerRadius` rolling around the inside of a circle of radius `outerRadius`.

13. def interpolate(points: Seq[Point], tension: Double = 0.5)

Interpolate a spline (a curve) that passes through all the given points, using the Catmul Rom formulation (see, e.g., https://en.wikipedia.org/wiki/Cubic_Hermite_spline)

Interpolate a spline (a curve) that passes through all the given points, using the Catmul Rom formulation (see, e.g., https://en.wikipedia.org/wiki/Cubic_Hermite_spline)

The tension can be changed to control how tightly the curve turns. It defaults to 0.5.

The Catmul Rom algorithm requires a point before and after each pair of points that define the curve. To meet this condition for the first and last points in `points`, they are repeated.

If `points` has less than two elements an empty `Path` is returned.

14. final def isInstanceOf[T0]: Boolean
Definition Classes
Any
15. def logarithmicSpiral(a: Double, b: Double)

Logarithmic spiral

16. final def ne(arg0: AnyRef): Boolean
Definition Classes
AnyRef
17. final def notify(): Unit
Definition Classes
AnyRef
Annotations
@native() @HotSpotIntrinsicCandidate()
18. final def notifyAll(): Unit
Definition Classes
AnyRef
Annotations
@native() @HotSpotIntrinsicCandidate()
19. def quadraticBezier(start: Point, cp: Point, end: Point)

20. def rose(k: Double, scale: Double = 1.0)

Rose curve

21. def sine(amplitude: Double, frequency: Double)

A sinusoid

22. final def synchronized[T0](arg0: ⇒ T0): T0
Definition Classes
AnyRef
23. def toString(): String
Definition Classes
AnyRef → Any
24. final def wait(arg0: Long, arg1: Int): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
25. final def wait(arg0: Long): Unit
Definition Classes
AnyRef
Annotations
@native() @throws( ... )
26. final def wait(): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )

### Deprecated Value Members

1. def finalize(): Unit
Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@Deprecated @deprecated @throws( classOf[java.lang.Throwable] )
Deprecated